\(\cfrac { \partial \, E_{ \Delta h } }{ \partial \, t }=\cfrac{A}{t+t^{-}}\)
such that \(t^{-}\rightarrow 0\) as \(t\rightarrow 0^{-}\) and we have the following illustrative plot.
where,
\(\cfrac { \partial \, E_{ \Delta h } }{ \partial \, t }=\cfrac{A}{t}\), and \(A\lt0\)
In practice, \(\cfrac { \partial \, E_{ \Delta h } }{ \partial \, t } \nrightarrow -\infty \) on the throw of the switch, but it can be a high value that,
\({a_{ \psi \, n }}_o=\cfrac { 1 }{ 2\pi } mc^{ 4 }\left( \left|\cfrac { \partial \, E_{ \Delta h } }{ \partial \, t } \right| \right) ^{ -1 }\)
is sufficiently large.
The question remains, how to induce \(\cfrac { \partial \, E_{ \Delta h } }{ \partial \, t }\) in a particle.