Saturday, December 6, 2014

Nothing Probabilistic, No Dice

Consider a particle oscillating about two dimension,


Consider the total energy \(\psi\),

\(\psi =\psi _{ 1 }+i\psi _{ 2 }\)

\( |\psi |^{ 2 }=\psi\psi^*=\left( \psi _{ 1 }+i\psi _{ 2 } \right) \left( \psi _{ 1 }-i\psi _{ 2 } \right) \)

\( |\psi |^{ 2 }=\psi _{ 1 }^{ 2 }+\psi _{ 2 }^{ 2 }\) --- (1)

If \(\psi_1\) is sinusoidal,

\( \psi _{ 1 }=|\psi |cos(\omega t)\)

then to satisfy (1)

\( \psi _{ 2 }=|\psi |sin(\omega t)\)

Therefore,

\( \psi =|\psi |\left\{ cos(\omega t)+isin(\omega t) \right\}\)

\( \psi =|\psi |e^{ iwt }\) --- (*)

From the post "Standing Waves, Particles, Time Invariant Fields", \(\psi\) is a circular standing wave about a center,


\(\cfrac { \partial ^{ 2 }\, \psi  }{ \partial \, t^{ 2 }_{ c } } =(ic)^{ 2 }\cfrac { \partial ^{ 2 }\, \psi  }{ \partial \, x^{ 2 } } =-c^{ 2 }\cfrac { \partial ^{ 2 }\, \psi  }{ \partial \, x^{ 2 } }\)

or

\(\ddot{\psi}=(ic)^2\nabla^2\psi\)

And

\(2\pi x=i.n\lambda\) --- (2)

where \(n=1,2,3,4...\) and when \(x=0\), \(n=0\)

Differentiating (*) wrt \(t\),

\( \dot { \psi  } =i\omega |\psi |e^{ iwt }=i\omega\psi\)

Differentiating wrt \(t\) again,

\( \ddot { \psi  } =-\omega ^{ 2 }|\psi |e^{ iwt }=-\omega ^{ 2 }\psi\)

And the wave equation becomes,

\( -\omega ^{ 2 }\psi =(ic)^{ 2 }\nabla ^{ 2 }\psi \)

\( \nabla ^{ 2 }\psi+\cfrac { \omega ^{ 2 } }{ (ic)^{ 2 } } \psi =0\)

As,

\(\lambda=\cfrac{c}{f}\)

We have Helmholtz equation of a complex wave \(\psi\),

\( \nabla ^{ 2 }\psi +\left( \cfrac { 2\pi  }{ i\lambda  }  \right) ^{ 2 }\psi =0\)

Substitute (2) into the above,

\( \nabla ^{ 2 }\psi +\left( \cfrac { n }{ x }  \right) ^{ 2 }\psi =0\)

where \(n=1,2,3,4...\) and when \(x=0\), \(n=0\) such that

\(\lim\limits_{x\rightarrow0}{\left( \cfrac { n }{ x }  \right)}=1\)

\(\psi\) is the total energy of the system, quantized.

And God said: "I'll just decide. No Dice."