Sunday, December 14, 2014

Bouncy Balls, Sticky Balls, Transfer Of Momentum

Consider this,

\(m_{ \rho \, p }c^{ 2 }=m_{ \rho  }c^{ 2 }-\int _{ 0 }^{ 2x_{ z} }{ \psi  } dx\)

If the particle  is to deform along \(x_z\),

\( \cfrac { \partial \, m_{ \rho \, p } }{ \partial \, x_{ z } } c^{ 2 }=-2\psi (x_{ z }) \)

where \(\psi(x_z)\) is a function in \(x_z\).  \(x_z\) marks the maximum of \(\psi\).

\( \cfrac { \partial \, m_{ \rho \, p } }{ \partial \, x_{ z } } \cfrac { \partial \, x_{ z } }{ \partial \, t } c^{ 2 }=-2\psi (x_{ z }) \cfrac { \partial \, x_{ z } }{ \partial \, t } \)

\( \cfrac { \partial \, m_{ \rho \, p } }{ \partial \, t } c^{ 2 }=-2\psi (x_{ z }) \cfrac { \partial \, x_{ z } }{ \partial \, t } \)

The rate of change of momentum is force,

\( F=\cfrac { \partial \, m_{ \rho \, p } }{ \partial \, t } c=-\cfrac{2}{c}\psi(x_{ z }) \cfrac { \partial \, x_{ z } }{ \partial \, t }  \)  per unit volume

the negative sign indicates that this force opposes the change in \(x_z\).  The impulse over time of the deformation is,

\(\Delta\,p= \int _{ 0 }^{ t_{ p } }{ F }\, d\, t=-\cfrac{2}{c}\int _{ 0 }^{ t_{ p } }{ \psi (x_{ z }) } \cfrac { \partial \, x_{z } }{ \partial \, t } d\, t=-\cfrac{2}{c}\int _{ x_{zo} }^{ x_{zf} }{ \psi (x_{ z })  } d\, x_{ z }\)

So, the change in momentum per unit volume is the

\(\Delta\,p=-\cfrac{2}{c}\int _{ x_{zo} }^{ x_{zf} }{ \psi } d\, x\)

where \(x_{zf}\) marks the deformation in \(\psi\) from \(x_{zo}\) and \(\Delta p\) is in the opposite direction to the change \(x_{zf}-x_{zo}\).

When \(\cfrac{\partial\,x_z}{\partial\,t}=0\), \(F=0\), thus the particle does not recover from the deformation.  Momentum is loss from the particle, the agent that cases the deformation \(x_{zo}\rightarrow x_{zf}\) gains the momentum.

If the particle disintegrate completely,

\(\Delta\,p=-\cfrac{2}{c}\int _{ x_{zo} }^{ 0 }{ \psi } d\, x=\cfrac{2}{c}\int ^{ x_{zo} }_{ 0 }{ \psi } d\, x=\cfrac{2}{c}\int ^{ x_{z} }_{ 0 }{ \psi } d\, x\)

If the particle has mass of radius \(a\),

\(\Delta\,p=-\cfrac{2}{c}\int _{ x_{zo} }^{ a }{ \psi } d\, x=\cfrac{2}{c}\int ^{ x_{zo} }_{a }{ \psi } d\, x=\cfrac{2}{c}\int ^{ x_{z} }_{a }{ \psi } d\, x\)

As such \(\psi\) around the particle can be transferred as momentum.