Sunday, December 21, 2014

H Bar And No Bar

\(h=x.mv\)

In the case of a circular path, \(n=1\)


\(h=2\pi a_\psi.mv\)

\(\hbar=\cfrac{h}{2\pi}= a_\psi.mv\)

in this case \(a_\psi\) is parallel to \(x\), but perpendicular to \(\lambda\),

When \(n=2\),

\(\Delta s=\sqrt { a^{ 2 }_{ \psi  }sin^{ 2 }(2\theta )(\Delta \theta )^{ 2 }+a^{ 2 }_{ \psi  }cos^{ 2 }(2\theta )(\Delta \theta )^{ 2 } } \)

\( \Delta s=a_{ \psi  }\Delta \theta \sqrt { sin^{ 2 }(2\theta )+cos^{ 2 }(2\theta ) } \)

\( \Delta s=a_{ \psi  }\Delta \theta \)

\( s=2\int _{ 0 }^{ \pi  }{ a_{ \psi  } } d\theta =2\pi a_{ \psi  }\)

Strangely both paths have the same length.  In fact,

\(\Delta s=\sqrt { a^{ 2 }_{ \psi  }sin^{ 2 }(n\theta )(\Delta \theta )^{ 2 }+a^{ 2 }_{ \psi  }cos^{ 2 }(n\theta )(\Delta \theta )^{ 2 } } \)

\(\Delta s=a_{ \psi  }\Delta \theta \sqrt { sin^{ 2 }(n\theta )+cos^{ 2 }(n\theta ) }\)

\(\Delta s=a_{ \psi  }\Delta \theta \)

Which means,

\(\hbar=a_\psi.mv\)

is valid for all \(n\).  The path length being the same for all \(n\) also means that for all \(n\), given a constant velocity at light speed, the period, \(T\) to traverse all paths is the same, hence, \(\psi\) has only one fundamental frequency, \(f_{n=1}\).

\(f_{n=1}=\cfrac{1}{T}\)

This is consistent with the fact that,

\(p=mc\)    and    \(E=mc^2\)

which are both constants, independent of \(n\).  The amplitude of the wave changes such that the energy of the wave is fully defined by,

\(E=hf_{n=1}\) --- (*)

For all cases of \(n\),

\(c=nf_{n=1}.\cfrac{\lambda_{n=1}}{n}=f_{n=1}.\lambda_{n=1}\)

Both \(p\) and \(E\) remain constant.  In this scenario where \(n\) wavelengths are packed into a perimeter of \(2\pi a_\psi\) all harmonics generated has the same energy given by (*).

The paths for \(n=1\) and \(n=2\) and the reference circle is generated using the following code in Scilab.

    t = 0:0.01:(2.0*%pi);
    x = 3*cos(t);
    y = 3*sin(t);
    z = 10*0.2*sin(t.*2);
 
    param3d(x,y,z,45,60,"",[2,0]);
    p=get("hdl"); //get handle on current entity (here the polyline entity)
    p.foreground=2;

    t = 0:0.01:(2.0*%pi);
    x = 3*cos(t);
    y = 3*sin(t);
    z = 10*0.2*sin(t.*1);
 
    param3d(x,y,z,45,60,"",[2,0]);
    p=get("hdl"); //get handle on current entity (here the polyline entity)
    p.foreground=5;  
 
    t = 0:0.01:(2.0*%pi);
    x = 3*cos(t);
    y = 3*sin(t);
    z = 0.000002*sin(t.*1);
 
    param3d(x,y,z,45,60,"",[2,0]);
    p=get("hdl"); //get handle on current entity (here the polyline entity)
    p.foreground=1;

Have a nice day.