Saturday, December 27, 2014

More ScFi, Resonator And Wrap Speed

Consider the expression for \(E_{ \Delta h }\),

\(E_{ \Delta h }=\int { F_{ \Delta hi } } da_{ \psi \, i }=mc^{ 2 }\cfrac { 1 }{ a_{ \psi \, i } } (a_{ \psi \, f }-a_{ \psi \, i })\)

Differentiating with respect to \(a_{ \psi \, i }\),

\( \cfrac { \partial \, E_{ \Delta h } }{ \partial \, a_{ \psi \, i } } =F_{ \Delta hi }=-mc^{ 2 }\cfrac { a_{ \psi \, f } }{ a^{ 2 }_{ \psi \, i } } \)

And consider,

\( E_{ \Delta h }=\int { F_{ \Delta hf } } da_{ \psi f }=mc^{ 2 }\cfrac { 1 }{ a_{ \psi \, i } } (a_{ \psi \, f }-a_{ \psi \, i })\)

Differentiating with respect to \(a_{ \psi \, f }\),

\( \cfrac { \partial \, E_{ \Delta h } }{ \partial \, a_{ \psi \, f } } =F_{ \Delta hf }=mc^{ 2 }\cfrac { 1 }{ a_{ \psi \, i } } \)

So, when both \(a_{ \psi \, i } \) and \(a_{ \psi \, f } \) are changing,

\( \cfrac { \partial \, E_{ \Delta h } }{ \partial \, a_{ \psi  } } =\cfrac { \partial \, E_{ \Delta h } }{ \partial \, a_{ \psi \, f } } +\cfrac { \partial \, E_{ \Delta h } }{ \partial \, a_{ \psi \, i } } =F_{ \Delta h\, T }=mc^{ 2 }\cfrac { 1 }{ a_{ \psi \, i } } \left( 1-\cfrac { a_{ \psi \, f } }{ a_{ \psi \, i } }  \right) \)

And we consider the second derivative,

\( \cfrac { \partial ^{ 2 }E_{ \Delta h } }{ \partial \, a^{ 2 }_{ \psi  } } = \cfrac { \partial \,  }{ \partial \, a_{ \psi  } }\left\{\cfrac { \partial \, E_{ \Delta h } }{ \partial \, a_{ \psi \, f } } +\cfrac { \partial \, E_{ \Delta h } }{ \partial \, a_{ \psi \, i } }\right\}=F^{ ' }_{ \Delta h\,T}\)

\(F^{ ' }_{ \Delta h\,T}=-mc^{ 2 }\cfrac { 1 }{ a^{ 2 }_{ \psi \, i } } +2mc^{ 2 }\cfrac { a_{ \psi \, f } }{ a^{ 3 }_{ \psi \, i } } -mc^{ 2 }\cfrac { 1 }{ a^{ 2 }_{ \psi \, i } } \)

\(F^{ ' }_{ \Delta h\,T}=2mc^{ 2 }\cfrac { 1 }{ a^{ 2 }_{ \psi \, i } } \left( \cfrac { a_{ \psi \, f } }{ a_{ \psi \, i } } -1 \right)  =-k\)

And an approximation,

\(F_{ \Delta h\, T }=F^{ ' }_{ \Delta h }.\Delta a_{\psi}\)

If such a system is prompted to oscillate,

\( \omega _{ n }=\sqrt { \cfrac { k }{ m }  } =\sqrt { 2 } c\sqrt { \cfrac { a_{ \psi \, f } }{ a^{ 3 }_{ \psi \, i } }  } \)

where \( \omega _{ n }\) is the natural frequency of the system.  Naturally, such a system is damped as it emits photons, the loss due to damping is,

\(P_{loss}=- \cfrac { \partial \, E_{ \Delta h } }{ \partial \, t }=-m\nu\left(\cfrac{d\,a_{\psi\,i}}{d\,t}\right)^2\)

where \(\nu\) (rads-1) is the damping factor using the model \(f(x,\dot{x})=-kx-m\nu\dot{x}\) and the rate at which \(f(x,\dot{x})\) does work is,

\(P=f.\dot{x}=-kx\dot{x}-m\nu\dot{x}^2=P_{osc}+P_{loss}\)

And consider, \(a_{\psi\,i}\) making a round trip to \(a_{\psi\,f}\) and back in time \(T_d=2\pi\cfrac{1}{\omega_d}\),

\(\cfrac{d\,a_{\psi\,i}}{d\,t}=\cfrac{2(a_{\psi\,i}-a_{\psi\,f})}{T_d}=\cfrac{1}{\pi}(a_{\psi\,i}-a_{\psi\,f})\omega_d\)

where \(\omega_d\) is the damped resonance frequency.  We have,

\( \cfrac { \partial \, E_{ \Delta h } }{ \partial \, t }=m\nu\left(\cfrac{d\,a_{\psi\,i}}{d\,t}\right)^2=m\nu\cfrac{1}{\pi^2}(a_{\psi\,i}-a_{\psi\,f})^2\omega^2_d\)

As,

\( \cfrac { \partial \, E_{ \Delta h } }{ \partial \, t } =\cfrac { \partial \, E_{ \Delta h } }{ \partial \, a_{ \psi \, f } }\cfrac{d\,a_{\psi\,f}}{d\,t} +\cfrac { \partial \, E_{ \Delta h } }{ \partial \, a_{ \psi \, i } }\cfrac{d\,a_{\psi\,i}}{d\,t} \)

Assuming \(\cfrac{d\,a_{\psi\,f}}{d\,t}=\cfrac{d\,a_{\psi\,i}}{d\,t}\), that the external driving force affects both equally,

\(mc^{ 2 }\cfrac { 1 }{ a_{ \psi \, i } } \left( 1-\cfrac { a_{ \psi \, f } }{ a_{ \psi \, i } }  \right)=m\nu\cfrac{1}{\pi}(a_{\psi\,i}-a_{\psi\,f})\omega_d \)

Since, \(a_\psi\) at \(a_{ \psi \, f }\) loses almost all its energy, the amplitude of the wave at \(a_{ \psi \, f }\), \(A_f\) is small,

\(\nu\approx 1\) rads-1

then,

\(w_d=\pi c^2\cfrac{1}{a^2_{ \psi \, i } }\)

which is a very high frequency, (1034Hz).

At this frequency, the particle will be "resonating" with high output of photons emitted as a result of the energy state transition \(a_{ \psi \, i } \rightarrow a_{ \psi \, f }\).

If this high frequency, \(\omega_d\) can be achieved, we have a photon resonator that might drive that particular particle to wrap speed.

Note:  What? Wrong to replace \(\dot{x}\) with average speed?