1εo∮14πa2ψdqψdtdAl=∮2πaψd(2πmc)dtdλ=∮2πaψFψdλ
If, we formulate instead,
∮ddt{qψ4πεoa2ψ}dAl=∮2πaψd(2πmc)dtdλ=∮2πaψFψdλ
Eψ=qψ4πεoa2ψ
ddt∮EψdAl=∮2πaψFψdλ
This expression is without any appendages because if the 2π factor missing from the circular momentum term is the only reason
εo≠μo,
then,
εo=μo=1c
after we made the correction, which would set,
Zo=1=√μoεo
that space present equal resistance to B and E field. With such a change to εo, the numerical value of q changes also.
1εo∮14πa2ψdqψdtdAl=∮2πaψd(2πmc)dtdλ
14πεo∮12πa2ψdqψdtdAl=∮aψd(mc)dtdλ=∮2πaψFψdλ
without the correction to circular momentum.
Since,
Jψ=12πa2ψdqψdt
14πεo∮JψdAl=∮2πaψFψdλ
And then we make the adjustment to εo, 4πεo→εnew to correct for the mssing 2π factor for circular momentum.
1εnew∮JψdAl=∮2πaψFψdλ
Since, μnew=εnew=1c
1μnew∮JψdAl=∮2πaψFψdλ
Why not simply make the adjustment mc→2πmc, and obtain,
12εo∮JψdAl=∮2πaψFψdλ
as in the post "Maxwell And Particles"???
This expression is wrong because it is still using the old definitions of μo and εo.