Saturday, December 20, 2014

de Broglie Per Unit Volume

From the post "Bouncy Balls, Sticky Balls, Transfer Of Momentum",

\(\Delta\,p=\cfrac{2}{c}\int ^{ x_{z} }_{a }{ \psi } d\, x\)

for a particle of radius \(a\), and \(a=0\) is possible.

And from the post "To Assume Or Not To Assume",

\(m_{ \rho \, p }c^{ 2 }=m_{ \rho  }c^{ 2 }-\int _{ 0 }^{ x_{ a} }{ \psi  } dx\)  --- (*)

In the case when, \(a=0\),

\(m_{ \rho  }c^{ 2 }=\int _{ 0 }^{ x_{ a} }{ \psi  } dx=2\int _{ 0 }^{ x_{ z} }{ \psi  } dx\)

therefore,

\(\Delta\,p=\cfrac{1}{c}\int ^{ x_{z} }_{0 }{ \psi } d\, x=m_{ \rho  }c\)

From the posts "Size Of Basic Particle From Its Spectrum" and  "Not All Integer But Half Has A Place",

\(f=n\cfrac{c}{2\pi a_\psi}\)

And we have,

\(\Delta\,p=2\pi a_\psi m_{ \rho  }\cfrac{f}{n}=2\pi a_\psi m_{ \rho  } c\cfrac{1}{n\lambda_n}\)

where around \(2\pi a_\psi\), \(n=1,2,3...\) wavelengths are packed.

 \(\Delta\,p=\cfrac{h_\rho}{\lambda_n}\)

where \(h_\rho=2\pi a_\psi m_{ \rho  }c\cfrac{1}{n}\),  \(n=1,2,3...\)

Momentum decreases with \(n\).  When \(n=1\) we have Louis de Broglie postulation that all particles with momentum have a wavelength,

 \(\Delta\,p=\cfrac{h_\rho}{\lambda}\),

where \(h_\rho=2\pi a_\psi m_{ \rho  }c\)

In this general case however, all particles have momentum that is the result of a change in \(\psi\) and in the case when the particle is fully manifested as \(\psi\), and all of \(\psi\) is "converted" to momentum,

\(\Delta\,p=m_{ \rho  }c\)

is a constant.  In the case where the particle is not completely \(\psi\), from relationship (*),

\(m_{ \rho \, p }c^{ 2 }+\int _{ 0 }^{ x_{ a} }{ \psi  } dx=m_{ \rho  }c^{ 2 }\)

\(m_{ \rho \, p }c+\cfrac{2}{c}\int _{ 0 }^{ x_{ z} }{ \psi  } dx=m_{ \rho  }c\)

\(m_{ \rho \, p }c+\Delta\,p=m_{ \rho  }c\)

the total momentum of the particle is still,

\(p_\rho=p_m+\Delta\,p=m_{ \rho  }c\)  a constant

where \(p_m=m_{ \rho \, p }c\) is the momentum of the particle due to its mass, and \(\Delta\,p\) is the momentum of the particle due to a change in its \(\psi\).