Tuesday, December 30, 2014

Time Speed Again, Two Pie Or Not Two Pie

Consider again,

Let,

\(r.\Delta \theta = k.\Delta t_c\)

\( \omega _{ c }=\cfrac { \partial \, \theta  }{ \partial \, t_{ c } } =\cfrac{k}{r} \)

\( \omega =\omega _{ c }\cfrac { \partial \, t_{ c } }{ \partial \, t } =\cfrac { \partial \, \theta  }{ \partial \, t_{ c } } \cfrac { \partial \, t_{ c } }{ \partial \, t } =\cfrac{k}{r} \cfrac { \partial \, t_{ c } }{ \partial \, t } \)

\( \left( \omega -\cfrac { k }{ r }  \right) \cfrac { \partial \, t_{ c } }{ \partial \, t } =0\)

As, \(r\rightarrow\infty\),   \(k\ne0\)

\( \omega\cfrac { \partial \, t_{ c } }{ \partial \, t } =0\)

since,

\( \omega\ne0\)

\(\cfrac { \partial \, t_{ c } }{ \partial \, t } =0\)

This implies that as time stretches out, time speed is zero.

when \(r\ne\infty\),

\(2\pi r=kt_{\lambda}\)

\(2\pi rf=kt_{\lambda}f=k\cfrac { \partial \, t_{ c } }{ \partial \, t }\)

\(\cfrac { \partial \, t_{ c } }{ \partial \, t }=\cfrac { 2\pi rf }{ k }=\cfrac { r\omega }{ k }=\cfrac{c}{k}\)

What about,

\(t_{ c }=2\pi r\)

\(\cfrac{t_c}{t}= \cfrac { 2\pi r }{ t } =c\)

\( \cfrac { \partial \, t_{ c } }{ \partial \, t } =2\pi \cfrac { \partial \, r }{ \partial \, t }=c \)

This is wrong because \(r\) for a given time speed is fixed.  Time \(t_c\), will always coil around \(x\) at a fixed \(r\), gvien \(\cfrac{\partial\,t_c}{\partial\,t}\),

\(\cfrac{\partial\,r}{\partial\,t}=0\)

\(r\) does not increase and the time coil does not expand as time progresses.

Time is in a helix with a phase associated with its position on its circular path along its axis of travel.  If time returns to its original phase at a distance \(t_{\lambda}\) ahead, after time period \(T\),

\(2\pi r=kt_{\lambda}\)

\(\cfrac { 2\pi r }{c}=T=\cfrac{k}{c}t_{\lambda}\)

\(t_{\lambda}=\cfrac{c}{k}T\)

so, time linear speed \(v_t\) is,

\(v_t=\cfrac{c}{k}\)

Time speed \(v_t\), is not light speed, \(c\).