Sunday, December 28, 2014

Cold Jump

From the post "Time Travel Made Easy",

\(\Delta_t=\cfrac{\partial\,t_{gf}}{\partial\,t}-\cfrac{\partial\,t_{gi}}{\partial\,t}=\cfrac{1}{mc^2}(\cfrac{\partial\,t_{gi}}{\partial\,t}E_{\Delta h}+t_{gi}\cfrac{\partial\,E_{\Delta h}}{\partial\,t})\)

From the post "Teleportation",

\(t_{ gi }=\cfrac { 2\pi a_{ \psi \, n } }{ c } \)

and

\(\cfrac{\partial\,t_{gi}}{\partial\,t}=c\)

We have,

\(\cfrac { \partial \, t_{ gf } }{ \partial \, t } -c=\cfrac { 1 }{ mc^{ 2 } } (cE_{ \Delta h }+\cfrac { 2\pi a_{ \psi \, n } }{ c } \cfrac { \partial \, E_{ \Delta h } }{ \partial \, t } )\)

\( \cfrac { 2\pi a_{ \psi \, n } }{ c } \cfrac { \partial \, E_{ \Delta h } }{ \partial \, t } =mc^{ 2 }\left( \cfrac { \partial \, t_{ gf } }{ \partial \, t } -c \right) -cE_{ \Delta h }\)

\( a_{ \psi \, n }=\cfrac { mc^{ 3 } }{ 2\pi  } \left( \cfrac { \partial \, t_{ gf } }{ \partial \, t } -c \right) \left( \cfrac { \partial \, E_{ \Delta h } }{ \partial \, t }  \right) ^{ -1 }-\cfrac { c^{ 2 }E_{ \Delta h } }{ 2\pi  } \left( \cfrac { \partial \, E_{ \Delta h } }{ \partial \, t }  \right) ^{ -1 }\) --- (*)

The plot below shows the \(\psi\) profile of two particles in pair, they are attracted to each other for \(x\lt a_{\psi}\).  If \(a_{\psi}\) is increased, \(\psi\) in the space between the two particles is close to zero and negative.


When \(\psi\) is depressed,


The plateau value of \(\psi_{+n}+\psi_{-n}\) decreases further into the negative region.

From equation (*), we see that even without a time speed differential,

\(\cfrac { \partial \, t_{ gf } }{ \partial \, t } -c=0\)

\( a_{ \psi \, n }=-\cfrac { c^{ 2 }E_{ \Delta h } }{ 2\pi  } \left( \cfrac { \partial \, E_{ \Delta h } }{ \partial \, t }  \right) ^{ -1 }\)

And since \(\psi\lt0\), any transitions from normal energy state, without the need to use high energy photons to first elevate the energy state, is negative,

 \(E_{ \Delta h }\lt 0\),

but,

\(\cfrac { \partial \, E_{ \Delta h } }{ \partial \, t }\lt0\)

so the direction of travel is opposite to the right hand screw rule,


where \(t_g\) around the spiral is slowed, ie \(\cfrac{\partial\,t_{gf}}{\partial\,t}\lt0\).  Such a scheme avoids the use of high energy photons to first slowly increase the particle's energy state and then allow the energy state to fall in a cascade.

Cool, very cool.  How then to depress \(\psi\)?