From the post "Time Travel Made Easy",
\(\Delta_t=\cfrac{\partial\,t_{gf}}{\partial\,t}-\cfrac{\partial\,t_{gi}}{\partial\,t}=\cfrac{1}{mc^2}(\cfrac{\partial\,t_{gi}}{\partial\,t}E_{\Delta h}+t_{gi}\cfrac{\partial\,E_{\Delta h}}{\partial\,t})\)
From the post "Teleportation",
\(t_{ gi }=\cfrac { 2\pi a_{ \psi \, n } }{ c } \)
and
\(\cfrac{\partial\,t_{gi}}{\partial\,t}=c\)
We have,
\(\cfrac { \partial \, t_{ gf } }{ \partial \, t } -c=\cfrac { 1 }{ mc^{ 2 } } (cE_{ \Delta h }+\cfrac { 2\pi a_{ \psi \, n } }{ c } \cfrac { \partial \, E_{ \Delta h } }{ \partial \, t } )\)
\( \cfrac { 2\pi a_{ \psi \, n } }{ c } \cfrac { \partial \, E_{ \Delta h } }{ \partial \, t } =mc^{ 2 }\left( \cfrac { \partial \, t_{ gf } }{ \partial \, t } -c \right) -cE_{ \Delta h }\)
\( a_{ \psi \, n }=\cfrac { mc^{ 3 } }{ 2\pi } \left( \cfrac { \partial \, t_{ gf } }{ \partial \, t } -c \right) \left( \cfrac { \partial \, E_{ \Delta h } }{ \partial \, t } \right) ^{ -1 }-\cfrac { c^{ 2 }E_{ \Delta h } }{ 2\pi } \left( \cfrac { \partial \, E_{ \Delta h } }{ \partial \, t } \right) ^{ -1 }\) --- (*)
The plot below shows the \(\psi\) profile of two particles in pair, they are attracted to each other for \(x\lt a_{\psi}\). If \(a_{\psi}\) is increased, \(\psi\) in the space between the two particles is close to zero and negative.
When \(\psi\) is depressed,
The plateau value of \(\psi_{+n}+\psi_{-n}\) decreases further into the negative region.
From equation (*), we see that even without a time speed differential,
\(\cfrac { \partial \, t_{ gf } }{ \partial \, t } -c=0\)
\( a_{ \psi \, n }=-\cfrac { c^{ 2 }E_{ \Delta h } }{ 2\pi } \left( \cfrac { \partial \, E_{ \Delta h } }{ \partial \, t } \right) ^{ -1 }\)
And since \(\psi\lt0\), any transitions from normal energy state, without the need to use high energy photons to first elevate the energy state, is negative,
\(E_{ \Delta h }\lt 0\),
but,
\(\cfrac { \partial \, E_{ \Delta h } }{ \partial \, t }\lt0\)
so the direction of travel is opposite to the right hand screw rule,
where \(t_g\) around the spiral is slowed, ie \(\cfrac{\partial\,t_{gf}}{\partial\,t}\lt0\). Such a scheme avoids the use of high energy photons to first slowly increase the particle's energy state and then allow the energy state to fall in a cascade.
Cool, very cool. How then to depress \(\psi\)?