Sunday, December 14, 2014

How Big Is Mama?

From the previous post "Photon Momentum", for a mass-less photon,

\(m_{ \rho \, p }c^{ 2 }=m_{ \rho  }c^{ 2 }-2\int _{ 0 }^{ x_{ z} }{ \psi  } dx=0\)

\(m_{ \rho  }c^{ 2 }=2\int _{ 0 }^{ x_{ z} }{ \psi  } dx\)

Since \(x_z\le a_\psi\)

\(m_{ \rho  }\le \cfrac{2}{c^{ 2 }}\int _{ 0 }^{a_\psi }{ \psi  } dx\)

we have an expression for the maximum mass density of a particle, \(m_{\rho\,max}\).  We cannot simply substitute the values for \(a_\psi\) discovered previously in the post "Sizing Them Up".  However, if the particle with \(a_\psi=15.48\) nm is a photon, then

\(x_z\le 15.48\)

Thus,

\(0\lt m_{ \rho  }\le \cfrac{2}{c^{ 2 }}\int _{ 0 }^{15.48}{ \psi  } dx\);

a size range restriction upon the mass density of the mother of all particles.