Loading [MathJax]/jax/output/CommonHTML/jax.js

Wednesday, November 22, 2017

Fuss With Time

Why is the x axis in the post "Thought Experiment Gone Wrong" dated 19 Nov 2017 moving at one unit per unit time?

Because the origin is defined as a point.  A line is a point moving.  In this case arbitrarily at one unit per unit time and the axis goes on forever.  A short line is a point moved, given its velocity, v

L=t0vdt=(t0v(x,t)dt)2+(t0v(y,t)dt)2


where v(y,t) is the y component of v and v(x,t) is the x component of vv is a vector integrated over time.  With,

dydt=a

dxdt=b

and so,

dydx=ab

with

(x1,y1)  as the starting point,

L=(x2x1v(x,t)1bdx)2+(y2y1v(y,t)1ady)2

(x2,y2) is the end point after time t, and y2=ab(x2x1)+y1 and

x1=b.t

Over one unit time,

x2=b+x1

and

y2=a+y1

but,

v(y,t)=dydt=a

v(x,t)=dxdt=b

so,

L=(x2x1b1bdx)2+(y2y1a1ady)2

L=(x2x1)2+(y2y1)2=b2+a2

which is what is expected.  Why the fuss?  We started with the origin as a point, the rest of the graph is with this point as the lowest denominator.  A infinite line is a point with a velocity; a finite length on the graph is a point with a velocity after a finite integral over an arbitrary time interval.

Both length and the axes have a direction and are vectors.  A curve is a point with changing velocity.  Intersections are paths that crosses irrespective of time.  But a collision is in both space and time.

Still what's the fuss?  The time dimension enters into the discussion because the issue at hand is space and time in spacetime diagrams.