\(v_{boom}=3.4354*\cfrac{density}{26}\) and
\(T_{boom}=v^2_{boom}*\cfrac{M_m}{3R}\)
\(R=8.3144\) is the gas constant.
\(n=\cfrac{Temp}{T_{boom}}\)
Temp (K) | Densityx10^3 (kg/m3) | v boom (m/s) | T boom (K) | n |
313.15 | 0.77244 | 102.063 | 19.239 | 16.277 |
312.15 | 0.77329 | 102.175 | 19.282 | 16.189 |
311.15 | 0.77414 | 102.288 | 19.324 | 16.102 |
310.15 | 0.77500 | 102.401 | 19.367 | 16.014 |
309.15 | 0.77585 | 102.514 | 19.410 | 15.928 |
308.15 | 0.77671 | 102.627 | 19.453 | 15.841 |
307.15 | 0.77756 | 102.740 | 19.495 | 15.755 |
306.15 | 0.77841 | 102.852 | 19.538 | 15.670 |
305.15 | 0.77927 | 102.966 | 19.581 | 15.584 |
304.15 | 0.78012 | 103.078 | 19.624 | 15.499 |
303.15 | 0.78097 | 103.190 | 19.667 | 15.415 |
302.15 | 0.78182 | 103.302 | 19.709 | 15.330 |
298.15 | 0.78522 | 103.752 | 19.881 | 14.997 |
297.15 | 0.78606 | 103.863 | 19.924 | 14.914 |
296.15 | 0.78691 | 103.975 | 19.967 | 14.832 |
295.15 | 0.78775 | 104.086 | 20.009 | 14.750 |
294.15 | 0.78860 | 104.198 | 20.053 | 14.669 |
293.15 | 0.78945 | 104.311 | 20.096 | 14.588 |
292.15 | 0.79029 | 104.422 | 20.139 | 14.507 |
291.15 | 0.79114 | 104.534 | 20.182 | 14.426 |
290.15 | 0.79198 | 104.645 | 20.225 | 14.346 |
289.15 | 0.79283 | 104.757 | 20.268 | 14.266 |
285.15 | 0.79620 | 105.203 | 20.441 | 13.950 |
284.15 | 0.79704 | 105.314 | 20.484 | 13.872 |
283.15 | 0.79788 | 105.424 | 20.527 | 13.794 |
282.15 | 0.79872 | 105.535 | 20.571 | 13.716 |
281.15 | 0.79956 | 105.646 | 20.614 | 13.639 |
280.15 | 0.80039 | 105.756 | 20.657 | 13.562 |
279.15 | 0.80123 | 105.867 | 20.700 | 13.485 |
278.15 | 0.80207 | 105.978 | 20.744 | 13.409 |
277.15 | 0.80290 | 106.088 | 20.787 | 13.333 |
276.15 | 0.80374 | 106.199 | 20.830 | 13.257 |
\(n\ne2\) as temperature decreases (compared with data for water). There are no extremas.
Ethanol has a flash point at \(289\,K\) and auto-ignite at \(638\,K\)
But methoxymethane \(CH_3OCH_3\), with density \(2.1146\,kgm^{-3}\) a gas at \(273.15\,K\) and the same \(Z=26\) and molar mass, \(M_m=46.06844*10^{-3}\,kgm^{-3}\),
\(v_{boom}=3.4354*\cfrac{2.1146}{26}=0.279\,ms^{-1}\) and
\(T_{boom}=v^2_{boom}*\cfrac{46.06844*10^{-3}}{3*8.3144}=1.441*10^{-4}\,K\)
Methoxymethane has a flash point at \(232\,K\) and auto-ignite at \(623\,K\). Methoxymethane does not form hydrogen bonds.
If \(T_{boom}\) is valid methoxymethane gas is nuclear at around \(1.441*10^{-4}\,K\) and resist further cooling at this temperature.
\(T_{boom}\) invoke Kinetic Theory for ideal GAS but seems valid only when density does not varies much with temperature as in a SOLID.
Maybe \(T_{boom}\) is about \(T\) particles that move freely in the solid or liquid. It is valid only within the confine of a solid or liquid. In a gas that is a mix of air and (as in the example above) Methoxymethane, a different approach is needed.
We need data of solid that burns, its density and auto-ignition temperature.