Monday, December 4, 2017

Per Unit Value Vs Substitution

What if we were to use,

\(\rho_n=\cfrac{8\pi}{\lambda^4}\)

why is this different from,

\(\rho_n=\cfrac{8\pi}{c^3}f^2\)

Because in actual,

\(\rho_{n\,\lambda}=\cfrac{dn_s}{d\lambda}=\cfrac{8\pi}{\lambda^4}\)

and

\(\rho_{n\,f}=\cfrac{dn_s}{df}=\cfrac{8\pi}{c^3}f^2\)

Because,

\(f\lambda=c\)

\(df\lambda+fd\lambda=0\)

\(df=-\cfrac{f}{\lambda}d\lambda\)

and

\(\rho_{n\,\lambda}*\cfrac{d\lambda}{df}=\cfrac{dn_s}{d\lambda}\cfrac{d\lambda}{df}=\cfrac{dn_s}{df}=\rho_{n\,f}\)

So,

\(\rho_{n\,f}=\cfrac{8\pi}{\lambda^4}*\cfrac{\lambda}{f}=\cfrac{8\pi}{\lambda^3}*\cfrac{1}{f}\)

\(\rho_{n\,f}=\cfrac{8\pi}{c^3}*\cfrac{f^3}{f}=\cfrac{8\pi}{c^3}f^2\)

It is a mistake to just substitute for \(\lambda=\cfrac{c}{f}\)

\(\rho_n=\cfrac{8\pi}{\lambda^4}=\cfrac{8\pi}{\left(\cfrac{c}{f}\right)^4}=\cfrac{8\pi}{c^4}f^4\ne\rho_{n\,f}\)

Have a nice day.