Thursday, December 7, 2017

Questions And More Questions Popping Charges

The expression, per atom view,

\(\cfrac{1}{2}(m_{\rho}*Z)v^{ 2 }_{max}=E_{input/atom}=\cfrac{1}{2}c^{ 2 }*{density}*{Z}*3.4354\)

gets into trouble because,

\(\cfrac{1}{2}m_{\rho}v^{ 2 }_{max}=E_{input/particle}\)

but

\(\cfrac{1}{2}c^{ 2 }*{density}*{Z}*3.4354=\cfrac{1}{2}c^{ 2 }*\cfrac{density}{Z}*Z^2*3.4354\)

\(E_{input/atom}=E_{input/particle}*Z^2\)

and so,

\(\cfrac{1}{2}(m_{\rho}*Z)v^{ 2 }_{max}=E_{input/particle}*Z\ne E_{input/atom}\)

what happened?  Furthermore, either,

\(\cfrac{1}{2}(m_{\rho}*Z)v^{ 2 }_{max}=\cfrac{1}{2}c^2*\cfrac{8\pi}{c^3}f^2\)

or

\(\cfrac{1}{2}(m_{\rho}*Z^2)v^{ 2 }_{max}=\cfrac{1}{2}c^2*\cfrac{8\pi}{c^3}f^2\)

suggests,

 \(f\propto v_{max}\),

not,

\(f\propto KE\)  or  \(f\propto v^2_{max}\)

And between

\(\cfrac{1}{2}c^{ 2 }*\cfrac{density}{Z}*3.4354\)  and  \(\cfrac{1}{2}c^{ 2 }*{density}*{Z}*3.4354\)

we have

\(\cfrac{1}{2}c^{ 2 }*{density}*3.4354\)

what of this expression?

The first issue seems to be resolved by considering the scaling factor \(Z\) as applied to \(v_{max}\) and not to \(m_{\rho}\) that,

\(\cfrac{1}{2}m_{\rho}\left(v_{max}*Z\right)^{ 2 }=E_{input/atom}=E_{input/particle}*Z^2\)

would this make sense?  Whether of \(Z\) particles or just one, mass density \(m_{\rho}\) remains constant.  So the formulation,

\(\cfrac{1}{2}(m_{\rho}*Z)v^{ 2 }_{max}=E_{input/atom}\)

is wrong.  But why would \(v_{max}\rightarrow v_{max}*Z\)?

Good night...