From the post "Small Negative, Big Positive" dated 24 Dec 2014,
\(\cfrac{a_{\psi\,\pi}}{a_{\psi\,ne}}\lt 1.5\)
at the limit,
\(\cfrac{a_{\psi\,\pi}}{a_{\psi\,ne}}=1.5\)
In the case of temperature particle, \(a_{\psi\,\pi}=273.43\,nm\)
\({a_{\psi\,ne}}=\cfrac{273.43}{1.5}=182.29\,nm\)
This particle is neutral.
\(\left.\cfrac { dq }{ dx }\right|_{ a_{ \psi \,ne} }=\left.3 \cfrac { \partial V\, }{ \partial \, x } \right|_{x=a_{\psi\,\pi}}\)
when two of its kind interact. But this particle is attracted by, \(a_{ \psi \,c }\)
\(\left.\cfrac { dq }{ dx }\right|_{ a_{ \psi \,c } }=\left[3 \cfrac { \partial V\, }{ \partial \, x } -1.49824\cfrac { \partial \, T }{ \partial \, x } \right]_{x=a_{\psi\,\pi}}\)
and repelled by, \(a_{ \psi \,\pi }\)
\(\left.\cfrac { dq }{ dx }\right|_{ a_{ \psi \,\pi } }=\left[3 \cfrac { \partial V\, }{ \partial \, x } +\cfrac { \partial \, T }{ \partial \, x } \right]_{x=a_{\psi\,\pi}}\)
One of a kind...