What is,
\(T_k=r*\cfrac{T}{T_g}\)
\(r=\cfrac{q_g}{\varepsilon_gk\Delta T}\)
or
\(\Delta T=T-T_g=\cfrac{q_g}{\varepsilon_gk*r}\)
using \(V_m\), from the post "Otherwise An Idiot..." dated 28 Dec 2017. Does it make sense?
\(T_g=\cfrac{\rho_c}{\varepsilon_c}\ne\cfrac{\rho_{\small{g,\,P\rightarrow \infty}}}{\varepsilon_g}\)
only for \(P\rightarrow \infty\) is
\(\cfrac{\rho_c}{\varepsilon_c}=\cfrac{\rho_{\small{g,\,P\rightarrow \infty}}}{\varepsilon_g}\)
Or should we consider instead,
\(T_k=r_g*\cfrac{T}{\Delta T}\)
\(r_g=\cfrac{q_g}{\varepsilon_gk T_g}\)
What is
\(T_g=\cfrac{q_g}{\varepsilon_gk *r_g}\)
??
Have a nice day?