Wednesday, December 27, 2017

They Are All Photons

This is another interpretation of the set of data from the post "Sizing Them Up" dated 3 Dec 2014,


where \(a_{\psi}=16.32\,nm\) is the value of \(a_{\psi\,ne}\).

But if,

\((n_2=2n_e)\rightarrow (n_1=n_e)+n_e\)

gives one photon \(a_{\psi\,ne}\), then

\((n_3=3n_e)\rightarrow (n_2=2n_e)+n_e\)

also gives one photon \(a_{\psi\,ne}\).  And both,

\((n_4=4n_e)\rightarrow (n_2=2n_e)+2n_e\)

\((n_2=3n_e)\rightarrow (n_1=2n_e)+n_e\)

give photon \(a_{\psi\,2ne}\).

What if they are all photons liberated, and we have,


where the smallest photon \(a_{\psi\,ne}\) has the highest energy.

\(a_{\psi}\) remains undetermined...