Rubidium \(Rb\), \(Z=37\), density, \(1.532\,gcm^{-3}\), and atomic mass \(85.4678\,gmol^{-1}\)
\(v_{boom}=3.4354*\cfrac{1532}{37}=142.24\,ms^{-1}\)
\(T_{p}=142.24^2*\cfrac{85.4678*10^{-3}}{2*8.3144}=103.99\,K\) or \(-169.16\,^oC\)
Silver, \(Ag\), \(Z=47\), density \(10.49\,gcm^{-3}\) and atomic mass \(107.8682\,gmol^{-1}\)
\(v_{boom}=3.4354*\cfrac{1049}{47}=76.68\,ms^{-1}\)
\(T_{p}=76.68^2*\cfrac{320.24*10^{-3}}{2*8.3144}=38.13\,K\) or \(-235.0\,^oC\)
and Rubidium Silver Iodide, \(AgIRb\) as a single crystal, \(Z_m=37+53+47=137\), density \(5.3\,gcm^{-3}\) and molar mass \(320.24\,gmol^{-1}\)
\(v_{boom}=3.4354*\cfrac{5300}{137}=132.90\,ms^{-1}\)
\(T_{p}=132.90^2*\cfrac{320.24*10^{-3}}{2*8.3144}=340.16\,K\) or \(67.0\,^oC\)
It is not the conduction band width that is being engineered for greater conductivity, but the presence of basic particle charge (a quarter of the normal electron charge) that adds to the crystal conductivity. Such basic particle charge is the result of \(v_{boom}\).