Sunday, November 2, 2014

What Is This?

We have a problem,

\(\cfrac { \partial \, B }{ \partial \, t } =-i\cfrac { \partial \, E }{ \partial x^{ ' } } \)

\( B=-i\int {\cfrac { \partial \, t }{ \partial x^{ ' } } \cfrac { \partial \, E }{ \partial x^{ ' } }  } \cfrac { \partial \, x^{ ' } }{ \partial \,t }d\, t\)

\( B=-i\int { \cfrac { \partial \, t }{ \partial x^{ ' } }\partial \, E  } \)

\( B=\cfrac { -i\,E }{ c } \)    assuming  \(B=0\)    when  \(E=0\)

where  \(-i\) rotates \(E\) into the \(x^{'}\) direction which is the direction of \(B\).

Although, given,

\(\cfrac{1}{c}=\sqrt{\mu_o\varepsilon_o}\),  we have

\( B^2=\cfrac { (-i)^2}{ c^2 }E^2 \)

\( B^2=-\mu_o\varepsilon_oE^2 \)

\( B^2=\mu_o\varepsilon_oE^2e^{i\pi} \)

or,

\( B^2=\mu_o\varepsilon_o(Ee^{i\pi/2})^2 \)

that  \(B\) and \(E\) are \(\pi/2\) out of phase.  And so,

\(\cfrac{1}{2\mu_o}\left|B\right|^2=\cfrac{1}{2}\varepsilon_o\left|E\right|^2 \)

which is consistent.  Euler strikes again.  \(e^{-i\pi/2}=-i\)