Processing math: 1%

Thursday, November 20, 2014

My Own Wave Equation

From the post "Not A Wave But Work Done!",

¨x(2i˙xc)ψtc=ic(1+i˙xc)˙x22ψx2+2¨xVtc --- (*)

derived under the assumption that x, a time invariant field.

Multiply (*) by i,

 i\ddot { x } \left( 2-i\cfrac { \dot { x }  }{ c }  \right) \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =-c\left( 1+i\cfrac { \dot { x }  }{ c }  \right) \dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } +2i\ddot { x } \cfrac { \partial V\,  }{ \partial \, t_{ c } }

Multiply by \left( 1-i\cfrac { \dot { x }  }{ c }  \right) ,

i\ddot { x } \left( 2-i\cfrac { \dot { x }  }{ c }  \right) \left( 1-i\cfrac { \dot { x }  }{ c }  \right) \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =-c\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } }  \right) \dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } +2i\left( 1-i\cfrac { \dot { x }  }{ c }  \right) \ddot { x } \cfrac { \partial V\,  }{ \partial \, t_{ c } }

c\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } }  \right) \dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } =-i\ddot { x } \left( 2-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } -3i\cfrac { \dot { x }  }{ c }  \right) \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } +2\left( \cfrac { \dot { x }  }{ c } +i \right) \ddot { x } \cfrac { \partial V\,  }{ \partial \, t_{ c } }

c\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } }  \right) \dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } =-\ddot { x } \left\{3\cfrac { \dot { x }  }{ c } +i(2-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } ) \right\} \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } +2\left( \cfrac { \dot { x }  }{ c } +i \right) \ddot { x } \cfrac { \partial V\,  }{ \partial \, t_{ c } }

Equating Real terms,

c\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } }  \right) \dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } =-3\cfrac { \dot { x }  }{ c } \ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } +2\cfrac { \dot { x }  }{ c } \ddot { x } \cfrac { \partial V\,  }{ \partial \, t_{ c } }

c\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } }  \right) \dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } =\cfrac { \ddot { x }  }{ c } \left\{-3\cfrac { \partial \, \psi  }{ \partial \, t_{ c } } +2\cfrac { \partial V\,  }{ \partial \, t_{ c } }  \right\}

Let's define

\cfrac{1}{\gamma^2}=\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } }  \right) 

We have,

\cfrac{c^2}{\gamma^2} \dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } ={ \ddot { x }  } \left\{- 3\cfrac { \partial \, \psi  }{ \partial \, t_{ c } } +2\cfrac { \partial V\,  }{ \partial \, t_{ c } }  \right\} --- (**)

Equating Imaginary terms,

-\ddot { x } (2-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } )\cfrac { \partial \, \psi  }{ \partial \, t_{ c } } +2\ddot { x } \cfrac { \partial V\,  }{ \partial \, t_{ c } } =0

\ddot{x}\ne 0

(2-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } )\cfrac { \partial \, \psi  }{ \partial \, t_{ c } }=2\cfrac { \partial V\,  }{ \partial \, t_{ c } }

\cfrac { \partial \, \psi  }{ \partial \, t_{ c } } +\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } }  \right) \cfrac { \partial \, \psi  }{ \partial \, t_{ c } }=2\cfrac { \partial V\,  }{ \partial \, t_{ c } }  

\left(1+\cfrac{1}{\gamma^2} \right)\cfrac { \partial \, \psi  }{ \partial \, t_{ c } }=2\cfrac { \partial V\,  }{ \partial \, t_{ c } } --- (***)

Substitute the above into (**),

\cfrac { c^{ 2 } }{ \gamma ^{ 2 } } \dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } =-{ \ddot { x }  }\left\{ 3\cfrac { \partial \, \psi  }{ \partial \, t_{ c } } -\left( 1+\cfrac { 1 }{ \gamma ^{ 2 } }  \right) \cfrac { \partial \, \psi  }{ \partial \, t_{ c } }  \right\}

\cfrac { c^{ 2 } }{ \gamma ^{ 2 } } \dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } =-{ \ddot { x }  }\left\{ 2-\cfrac { 1 }{ \gamma ^{ 2 } }  \right\} \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } --- (1)

{ \ddot { x }  }\cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =-\cfrac { c^{ 2 } }{ \left\{ 2\gamma ^{ 2 }-1 \right\}  } \dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } 

Equivalently from (1),

{\left( 1+\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } }  \right) \ddot { x }  } \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =-c^{ 2 }\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } }  \right) \dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } }

This suggests that when \dot{x}=c, \cfrac{1}{\gamma^2}=0

{ 2\ddot { x }  }\cfrac { \partial \, \psi  }{ \partial \, t_{ c } }=0

Then either,

 \ddot{x}=0 and \cfrac { \partial \, \psi  }{ \partial \, t_{ c } }= \cfrac { \partial \, V }{ \partial \, t_{ c } }

or,

\cfrac { \partial \, \psi  }{ \partial \, t_{ c } }=0,

that the total energy of the system is a constant in time t_c and is at an extrema.  In this case \psi has a stable point when \dot{x}=c.  From (***),

\cfrac { \partial \psi  }{ \partial \, t_{ c } }=2\cfrac { \partial V\,  }{ \partial \, t_{ c } }=0

when \dot{x}=c, and

\cfrac { \partial^2 \psi  }{ \partial \, t^2_{ c } }=2\cfrac { \partial^2 V\,  }{ \partial \, t_{ c }^2 }

\psi is minimum when V is at its local maximum.  This shows that the system, as far as \psi, the total energy is concerned, can be stable at light speed, \dot{x}=c.  At that point V is at its local maximum.

We now consider the case when \dot{x}\lt\lt c,

{ \ddot { x }  } \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =-c^{ 2 } \dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } }

{m \ddot { x }  } \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =-c^{ 2 }m \dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } }

With F=m\ddot{x}  and p=m\dot{x},

F\cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =-c^{ 2 }p \cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } }

Since, -\cfrac { \partial \, \psi  }{ \partial x } =F=m\ddot { x } 

\cfrac { \partial \, \psi  }{ \partial x } \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =c^{ 2 }p\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } }

with t_c=\cfrac{1}{\sqrt{2}}t.e^{-i\pi/4},

\cfrac { \partial \, \psi  }{ \partial x } \cfrac { \partial \, \psi  }{ \partial \, t } =\cfrac{c^{ 2 }p}{\sqrt{2}}.\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } }.e^{-i\pi/4}

in time t.

There should be more implications from this equation to prove its validity or disprove it.