From the post "Not A Wave But Work Done!",
¨x(2−i˙xc)∂ψ∂tc=ic(1+i˙xc)˙x2∂2ψ∂x2+2¨x∂V∂tc --- (*)
derived under the assumption that x⃛, a time invariant field.
Multiply (*) by i,
i\ddot { x } \left( 2-i\cfrac { \dot { x } }{ c } \right) \cfrac { \partial \, \psi }{ \partial \, t_{ c } } =-c\left( 1+i\cfrac { \dot { x } }{ c } \right) \dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } } +2i\ddot { x } \cfrac { \partial V\, }{ \partial \, t_{ c } }
Multiply by \left( 1-i\cfrac { \dot { x } }{ c } \right) ,
i\ddot { x } \left( 2-i\cfrac { \dot { x } }{ c } \right) \left( 1-i\cfrac { \dot { x } }{ c } \right) \cfrac { \partial \, \psi }{ \partial \, t_{ c } } =-c\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } \right) \dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } } +2i\left( 1-i\cfrac { \dot { x } }{ c } \right) \ddot { x } \cfrac { \partial V\, }{ \partial \, t_{ c } }
c\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } \right) \dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } } =-i\ddot { x } \left( 2-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } -3i\cfrac { \dot { x } }{ c } \right) \cfrac { \partial \, \psi }{ \partial \, t_{ c } } +2\left( \cfrac { \dot { x } }{ c } +i \right) \ddot { x } \cfrac { \partial V\, }{ \partial \, t_{ c } }
c\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } \right) \dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } } =-\ddot { x } \left\{3\cfrac { \dot { x } }{ c } +i(2-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } ) \right\} \cfrac { \partial \, \psi }{ \partial \, t_{ c } } +2\left( \cfrac { \dot { x } }{ c } +i \right) \ddot { x } \cfrac { \partial V\, }{ \partial \, t_{ c } }
Equating Real terms,
c\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } \right) \dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } } =-3\cfrac { \dot { x } }{ c } \ddot { x } \cfrac { \partial \, \psi }{ \partial \, t_{ c } } +2\cfrac { \dot { x } }{ c } \ddot { x } \cfrac { \partial V\, }{ \partial \, t_{ c } }
c\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } \right) \dot { x } \cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } } =\cfrac { \ddot { x } }{ c } \left\{-3\cfrac { \partial \, \psi }{ \partial \, t_{ c } } +2\cfrac { \partial V\, }{ \partial \, t_{ c } } \right\}
Let's define
\cfrac{1}{\gamma^2}=\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } \right)
We have,
\cfrac{c^2}{\gamma^2} \dot { x } \cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } } ={ \ddot { x } } \left\{- 3\cfrac { \partial \, \psi }{ \partial \, t_{ c } } +2\cfrac { \partial V\, }{ \partial \, t_{ c } } \right\} --- (**)
Equating Imaginary terms,
-\ddot { x } (2-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } )\cfrac { \partial \, \psi }{ \partial \, t_{ c } } +2\ddot { x } \cfrac { \partial V\, }{ \partial \, t_{ c } } =0
\ddot{x}\ne 0
(2-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } )\cfrac { \partial \, \psi }{ \partial \, t_{ c } }=2\cfrac { \partial V\, }{ \partial \, t_{ c } }
\cfrac { \partial \, \psi }{ \partial \, t_{ c } } +\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } \right) \cfrac { \partial \, \psi }{ \partial \, t_{ c } }=2\cfrac { \partial V\, }{ \partial \, t_{ c } }
\left(1+\cfrac{1}{\gamma^2} \right)\cfrac { \partial \, \psi }{ \partial \, t_{ c } }=2\cfrac { \partial V\, }{ \partial \, t_{ c } } --- (***)
Substitute the above into (**),
\cfrac { c^{ 2 } }{ \gamma ^{ 2 } } \dot { x } \cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } } =-{ \ddot { x } }\left\{ 3\cfrac { \partial \, \psi }{ \partial \, t_{ c } } -\left( 1+\cfrac { 1 }{ \gamma ^{ 2 } } \right) \cfrac { \partial \, \psi }{ \partial \, t_{ c } } \right\}
\cfrac { c^{ 2 } }{ \gamma ^{ 2 } } \dot { x } \cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } } =-{ \ddot { x } }\left\{ 2-\cfrac { 1 }{ \gamma ^{ 2 } } \right\} \cfrac { \partial \, \psi }{ \partial \, t_{ c } } --- (1)
{ \ddot { x } }\cfrac { \partial \, \psi }{ \partial \, t_{ c } } =-\cfrac { c^{ 2 } }{ \left\{ 2\gamma ^{ 2 }-1 \right\} } \dot { x } \cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } }
Equivalently from (1),
{\left( 1+\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } \right) \ddot { x } } \cfrac { \partial \, \psi }{ \partial \, t_{ c } } =-c^{ 2 }\left( 1-\cfrac { \dot { x } ^{ 2 } }{ c^{ 2 } } \right) \dot { x } \cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } }
This suggests that when \dot{x}=c, \cfrac{1}{\gamma^2}=0
{ 2\ddot { x } }\cfrac { \partial \, \psi }{ \partial \, t_{ c } }=0
Then either,
\ddot{x}=0 and \cfrac { \partial \, \psi }{ \partial \, t_{ c } }= \cfrac { \partial \, V }{ \partial \, t_{ c } }
or,
\cfrac { \partial \, \psi }{ \partial \, t_{ c } }=0,
that the total energy of the system is a constant in time t_c and is at an extrema. In this case \psi has a stable point when \dot{x}=c. From (***),
\cfrac { \partial \psi }{ \partial \, t_{ c } }=2\cfrac { \partial V\, }{ \partial \, t_{ c } }=0
when \dot{x}=c, and
\cfrac { \partial^2 \psi }{ \partial \, t^2_{ c } }=2\cfrac { \partial^2 V\, }{ \partial \, t_{ c }^2 }
\psi is minimum when V is at its local maximum. This shows that the system, as far as \psi, the total energy is concerned, can be stable at light speed, \dot{x}=c. At that point V is at its local maximum.
We now consider the case when \dot{x}\lt\lt c,
{ \ddot { x } } \cfrac { \partial \, \psi }{ \partial \, t_{ c } } =-c^{ 2 } \dot { x } \cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } }
{m \ddot { x } } \cfrac { \partial \, \psi }{ \partial \, t_{ c } } =-c^{ 2 }m \dot { x } \cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } }
With F=m\ddot{x} and p=m\dot{x},
F\cfrac { \partial \, \psi }{ \partial \, t_{ c } } =-c^{ 2 }p \cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } }
Since, -\cfrac { \partial \, \psi }{ \partial x } =F=m\ddot { x }
\cfrac { \partial \, \psi }{ \partial x } \cfrac { \partial \, \psi }{ \partial \, t_{ c } } =c^{ 2 }p\cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } }
with t_c=\cfrac{1}{\sqrt{2}}t.e^{-i\pi/4},
\cfrac { \partial \, \psi }{ \partial x } \cfrac { \partial \, \psi }{ \partial \, t } =\cfrac{c^{ 2 }p}{\sqrt{2}}.\cfrac { \partial ^{ 2 }\psi }{ \partial \, x^{ 2 } }.e^{-i\pi/4}
in time t.
There should be more implications from this equation to prove its validity or disprove it.