Loading [MathJax]/jax/output/CommonHTML/jax.js

Saturday, November 15, 2014

Ribbons, Rings and Yoda

From "Torus Starts Here",

Lor2=(2πror)2+(n2πrp)2

We have the surface area of the ribbon extended by the helical torus,

Ar=12.2πr.r=12Lor.rp

Ar=12rp{(2πror)2+(n2πrp)2}1/2

Ar=πrp{(ror)2+(nrp)2}1/2

If we imagine stacking such ribbons into a torus, we have the volume of a torus as,

Vtor=λAr=λ12rp{(2πror)2+(n2πrp)2}1/2

Vtor=12Lcirnrp{(2πror)2+(n2πrp)2}1/2

Vtor=πnrorrp{(2πror)2+(n2πrp)2}1/2

Vtor=2π2nrorrp{(ror)2+(nrp)2}1/2

Similarly, the surface area of a torus is given by,

Ator=λLor=2πrorn{(2πror)2+(n2πrp)2}1/2

Ator=(2π)2rorn{(ror)2+(nrp)2}1/2

Which must be reconsidered deeply.  Mediate on it I will.