From "Torus Starts Here",
Lor2=(2πror)2+(n2πrp)2
We have the surface area of the ribbon extended by the helical torus,
Ar=12.2πr.r=12Lor.rp
Ar=12rp{(2πror)2+(n2πrp)2}1/2
Ar=πrp{(ror)2+(nrp)2}1/2
If we imagine stacking such ribbons into a torus, we have the volume of a torus as,
Vtor=λAr=λ12rp{(2πror)2+(n2πrp)2}1/2
Vtor=12Lcirnrp{(2πror)2+(n2πrp)2}1/2
Vtor=πnrorrp{(2πror)2+(n2πrp)2}1/2
Vtor=2π2nrorrp{(ror)2+(nrp)2}1/2
Similarly, the surface area of a torus is given by,
Ator=λLor=2πrorn{(2πror)2+(n2πrp)2}1/2
Ator=(2π)2rorn{(ror)2+(nrp)2}1/2
Which must be reconsidered deeply. Mediate on it I will.