Wednesday, November 19, 2014

Passing Opposite In Love

Consider two similar particles one along the positive time line, \(t_c\) and the other on the negative time line, \(-t_c\),

\(\cfrac { \partial \, \psi _{ 1 } }{ \partial \, t_c }=\sqrt{2}\cfrac { \partial \, \psi _{ 1 } }{ \partial \, t }e^{ i\pi /4 } \)

\(\cfrac { \partial \, \psi _{ 2 } }{ \partial \, (-t_c) }=-\sqrt{2}\cfrac { \partial \, \psi _{ 2 } }{ \partial \, t }e^{ i\pi /4 } \)

given, \(t_c=\cfrac{1}{\sqrt{2}}t.e^{-i\pi/4}\)

When they are exchanging energy along the two orthogonal space dimension,

\(\cfrac { \partial \, \psi _{ 1 } }{ \partial \, t _c} =\cfrac { \partial \, \psi _{ 2 } }{ \partial \left( -t _c\right)  } \)

\(\cfrac { \partial \, \psi _{ 1} }{ \partial \, t } =-\cfrac { \partial \, \psi _{ 2 } }{ \partial \, t } \)

Here \(\psi\) is a wave, oscillating between two space dimensions and traveling down a third dimension that is the time dimension, \(t_g\).  The wave exist in a second time dimension, \(t_c\) by which velocities and other rate of change in time are measured.

With these relationships we formulate,

\(\ddot { x } \cfrac { \partial \, \psi _{ 1 } }{ \partial \, t } =\ddot { x } .\left(-\cfrac { \partial \, \psi _{ 2 } }{ \partial \, t }\right) =-\ddot { x } \cfrac { \partial \, \psi _{ 2 } }{ \partial \, t } \)

Since,

\(\ddot { x } \cfrac { \partial \, \psi _{ 1 } }{ \partial \, t } =-\cfrac { c^{ 3 } }{ \sqrt { 2 }  } \cfrac { \partial ^{ 2 }\psi _{ 1 } }{ \partial \, x^{ 2 } } e^{ -i\pi /4 }\)

and

\( -\ddot { x } .\cfrac { \partial \, \psi _{ 2 } }{ \partial \, t } =\cfrac { c^{ 3 } }{ \sqrt { 2 }  } \cfrac { \partial ^{ 2 }\psi _{ 2 } }{ \partial \, x^{ 2 } } e^{ -i\pi /4 }\)

We have,

\(-\cfrac { c^{ 3 } }{ \sqrt { 2 }  } \cfrac { \partial ^{ 2 }\psi _{ 1 } }{ \partial \, x^{ 2 } } e^{ -i\pi /4 }=\cfrac { c^{ 3 } }{ \sqrt { 2 }  } \cfrac { \partial ^{ 2 }\psi _{ 2 } }{ \partial \, x^{ 2 } } e^{ -i\pi /4 }\)

and so,

\( -\cfrac { \partial ^{ 2 }\psi _{ 1 } }{ \partial \, x^{ 2 } } =\cfrac { \partial ^{ 2 }\psi _{ 2 } }{ \partial \, x^{ 2 } } \)

The gradient of the forces which are indicative of their directions,

\(\cfrac { \partial \, F_{ 1 } }{ \partial \, x } =\cfrac { \partial ^{ 2 }\psi _{ 1 } }{ \partial \, x^{ 2 } } =-\cfrac { \sqrt { 2 }  }{ c^{ 3 } } \ddot { x } \cfrac { \partial \, \psi _{ 1 } }{ \partial \, t } e^{ i\pi /4 }\)

\(\cfrac { \partial \, F_{ 2 } }{ \partial \, x } =\cfrac { \partial ^{ 2 }\psi _{ 2 } }{ \partial \, x^{ 2 } } =\cfrac { \sqrt { 2 }  }{ c^{ 3 } } \ddot { x } \cfrac { \partial \, \psi _{ 1 } }{ \partial \, t } e^{ i\pi /4 }\)


These forces satisfy the change in energy required of both particles as \(\psi\) oscillates in \(t_c\) time.  \(\psi\) however is not oscillating in \(t\).  In the diagram above, we consider a point on \(\psi_2\) along the line joining the two centers of the particles.  The resultant force \(F\) is towards \(\psi_1\) drawing the particles closer and we see that the forces are attractive; that particles in opposing directions on the time axis \(t_c\) attract each other.  It is assumed that the force decreases monotonously with \(x\).

In a similar way,


when both particle are traveling in the same direction,

\(\cfrac { \partial \, F_{ 1 } }{ \partial \, x } =\cfrac { \partial ^{ 2 }\psi _{ 1 } }{ \partial \, x^{ 2 } } =-\cfrac { \sqrt { 2 }  }{ c^{ 3 } } \ddot { x } \cfrac { \partial \, \psi _{ 1 } }{ \partial \, t } e^{ i\pi /4 }\)

\(\cfrac { \partial \, F_{ 2 } }{ \partial \, x } =\cfrac { \partial ^{ 2 }\psi _{ 2 } }{ \partial \, x^{ 2 } } =-\cfrac { \sqrt { 2 }  }{ c^{ 3 } } \ddot { x } \cfrac { \partial \, \psi _{ 1 } }{ \partial \, t } e^{ i\pi /4 }\)

The resultant force \(F\) is away from \(\psi_1\) pushing the particles closer and we see that the forces are repuslive; that particles in the same directions on the time axis \(t_c\) repel each other.  It is assumed that the force decreases monotonously with \(x\); that \( \cfrac { \partial \, \psi  }{ \partial \, t }\) does not flip sign.

It is better to solve for the force,

\(F_{\psi}=-\cfrac { \partial\,\psi }{ \partial \, x} \)

directly.  Just from the above analysis, attractive force is greater than the repulsive force.