Saturday, November 15, 2014

\(n\) The Problem Is

What is \(n\)?

\(n\) must be an integer for valid solutions to area and volume of the torus.  Given \(r_p\) and \(r_{or}\), what is the minimum \(n_z\)?  But a trained master will instead, consider

\(V_{ tor }=\cfrac { \pi  }{ n } r_{ or }r_{ p }\left\{ (2\pi r_{ or })^{ 2 }+(n2\pi r_{ p })^{ 2 } \right\} ^{ 1/2 }\)

In the limit \(n\rightarrow\infty\),

\(\lim\limits_{n\rightarrow\infty}{V_{ tor }}=\lim\limits_{n\rightarrow\infty}{\cfrac { \pi  }{ n } r_{ or }r_{ p }\left\{ (2\pi r_{ or })^{ 2 }+(n2\pi r_{ p })^{ 2 } \right\} ^{ 1/2 }}\)

\(\lim\limits_{n\rightarrow\infty}{V_{ tor }}=\lim\limits_{n\rightarrow\infty}{\pi   r_{ or }r_{ p }\left\{ (\cfrac{2\pi r_{ or }}{n})^{ 2 }+(2\pi r_{ p })^{ 2 } \right\} ^{ 1/2 }}\)

\(V_{ tor }={\pi   r^2_{ p }.2\pi}r_{or}\)

which is the published result for the volume of a torus.  In the limit \(n\rightarrow\infty\) it does not matter whether \(n\) is a integer or not.

In a similar way, the surface area of the torus is given by,

\(A_{tor}=\lambda L_{or}=\cfrac{2\pi r_{or}}{n}\left\{( 2\pi r_{or})^2 +( n2\pi r_{ p } ) ^{ 2 }\right\}^{1/2}\)

In the limit \(n\rightarrow\infty\),

\(\lim\limits_{n\rightarrow\infty}{A_{tor}}=\lim\limits_{n\rightarrow\infty}{\cfrac{2\pi r_{or}}{n}\left\{( 2\pi r_{or})^2 +( n2\pi r_{ p } ) ^{ 2 }\right\}^{1/2}}\)

\(\lim\limits _{ n\rightarrow \infty  }{ A_{ tor } } =\lim\limits _{ n\rightarrow \infty  }{ 2\pi r_{ or }\left\{ (\cfrac { 2\pi r_{ or } }{ n } )^{ 2 }+(2\pi r_{ p })^{ 2 } \right\} ^{ 1/2 } } \)

\( A_{ tor }=2\pi r_{ or }2\pi r_{ p }\)

which is very nice.