Tuesday, November 18, 2014

Not A Wave, But Work Done!

Consider the wave equation,

\(\cfrac{\partial^2\psi}{\partial\,t^2}=c^2\cfrac{\partial^2\psi}{\partial\,x^2}=\cfrac{\partial\,x}{\partial\,t}\cfrac{\partial\,x}{\partial\,t}\cfrac{\partial^2\psi}{\partial\,x\partial\,x}\)

when one of the space dimension has been replaced by a time dimension. The particle exists along the charge time \(t_c\) axis or the gravitational time \(t_g\) axis, from which its velocity is based. And as a wave, travels down the other orthogonal time axis.

\(\cfrac{\partial^2\psi}{\partial\,t^2_c}=\cfrac{\partial\,x}{\partial\,t_c}\cfrac{\partial\,t_g}{\partial\,t_c}\cfrac{\partial^2\psi}{\partial\,t_g\partial\,x}\)

\(\cfrac{\partial^2\psi}{\partial\,t^2_g}=\cfrac{\partial\,x}{\partial\,t_g}\cfrac{\partial\,t_c}{\partial\,t_g}\cfrac{\partial^2\psi}{\partial\,t_c\partial\,x}\)

Since,

\(t_c=\cfrac{1}{\sqrt{2}}t.e^{-i\pi/4}\)  and  \(t_g=\cfrac{1}{\sqrt{2}}t.e^{+i\pi/4}\)

\(t_c=t_ge^{-i\pi/2}\) --- (a)

\(t_c=-it_g\)  and \(\cfrac{\partial\,t_c}{\partial\,t_g}=-i\)

\(t_g=it_c\)  and   \(\cfrac{\partial\,t_g}{\partial\,t_c}=i\)

and,

\(\cfrac{\partial\,x}{\partial\,t_c}=\cfrac{\partial\,x}{\partial\,t_g}=ic\)

this definition of velocity has a explicit direction notation \(i\) to be consistent with the explicit orthogonality between the time axes in (a) above

The equations for 'time' waves are then given by,

\(\cfrac{\partial^2\psi}{\partial\,t^2_c}=ic.i\cfrac{\partial^2\psi}{\partial\,x\partial\,t_g}=ici\cfrac{\partial^2\psi}{\partial\,x\partial\,(it_c)}=ic\cfrac{\partial^2\psi}{\partial\,x\partial\,t_c}\)

\(\cfrac{\partial^2\psi}{\partial\,t^2_g}=ic.(-i)\cfrac{\partial^2\psi}{\partial\,x\partial\,t_c}=ic.(-i)\cfrac{\partial^2\psi}{\partial\,x\partial\,(-it_g)}=ic\cfrac{\partial^2\psi}{\partial\,x\partial\,t_g}\)

from the post "How Time Flies".  \(t_c\) and \(t_g\) are equivalent.  A mass particle is associated with \(t_g\) and an electron is associated with \(t_c\).

Consider the Lagrangian,

\(L=T-V\)

\(\cfrac{d\,}{d\,t}\left(\cfrac{\partial\, L}{\partial\,\dot{x}}\right)=\cfrac{\partial\, L}{\partial\,x}\)

If all dimension are equivalent, then the Lagrangian and Euler-Lagrange Equation is still applicable, when \(t\) is either \(t_c\) or \(t_g\).

\(\psi=T+V=\cfrac{1}{2}m_p\dot{x}^2+V\)

\(L=\cfrac{1}{2}m_p\dot{x}^2-(\psi-\cfrac{1}{2}m_p\dot{x}^2)\)

where \(\psi\) is the total energy between the two space dimensions and \(\dot{x}\) the velocity of the particle.

\(L=m_p\dot{x}^2-\psi\)

We consider existence along \(t_c\),

\(\cfrac{d\,}{d\,t_c}\left(\cfrac{\partial\, L}{\partial\,\dot{x}}\right)=\cfrac{d\,}{d\,t_c}\left(\cfrac{\partial}{\partial\,\dot{x}}\left\{m_p\dot{x}^2-\psi\right\}\right)\)

\(\cfrac { d\,  }{ d\, t_c } \left( \cfrac { \partial \, L }{ \partial \, \dot { x }  }  \right) =\cfrac { d\,  }{ d\, t_c } \left( 2m_{ p }\dot { x } -\cfrac { \partial \psi  }{ \partial \, \dot { x }  }  \right) =2m_{ p }\ddot { x } -\cfrac { \partial  }{ \partial \, \dot { x }  } \left\{ \cfrac { d\, \psi  }{ d\, t_c }  \right\} \)

and,

\(\cfrac{\partial\, L}{\partial\,x}=\cfrac{\partial}{\partial\,x}\left\{m_p\dot{x}^2-\psi\right\}=-\cfrac{\partial\,\psi}{\partial\,x}\)

So,

\(\cfrac { \partial  }{ \partial \, \dot { x }  } \left\{ \cfrac { d\, \psi  }{ d\, t_c }  \right\}=2m_{ p }\ddot { x } +\cfrac{\partial\,\psi}{\partial\,x}\) --- (*)

Differentiate with respect to \(x\),

\(\cfrac { \partial}{ \partial \, x } \left\{ \cfrac { \partial  }{ \partial \, \dot { x }  } \left\{ \cfrac { d\, \psi  }{ d\, t_c }  \right\}  \right\} =\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x\partial \, x } \)

\(\cfrac { \partial  }{ \partial \, \dot { x }  } \left\{ \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t_c\partial \, x }  \right\} =\cfrac { \partial  }{ \partial \, \dot { x }  } \left\{ -\cfrac { i }{c } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_c }  \right\} =\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } \)

\(\cfrac { \partial  }{ \partial \, \dot { x }  } \left\{  \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_c }  \right\} =ic\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } \) --- (b)

but,\(\require{cancel}\)

\(\cfrac { \partial \, \psi  }{ \partial \, x } =\cfrac { \partial \, \psi  }{ \partial \, \dot { x }  }\cancelto{0}{ \cfrac { d\, \dot { x }  }{ d\, x }} +\cfrac { \partial \, \psi  }{ \partial \, t_c } \cfrac { d\, t_c }{ d\, x } \)

So (*) becomes,

\(\cfrac { \partial  }{ \partial \, \dot { x }  } \left\{ \cfrac { d\, \psi  }{ d\, t_c }  \right\} =2m_{ p }\ddot { x } +\cfrac { \partial \, \psi  }{ \partial \, t_c } \cfrac { d\, t _c}{ d\, x } \)

Consider,

\(\cfrac { \partial  }{ \partial \, t_c } \cfrac { \partial  }{ \partial \, \dot { x }  } \left\{ \cfrac { d\, \psi  }{ d\, t_c }  \right\} = \cfrac { \partial  }{ \partial \, \dot { x }  } \left\{\cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 } _c}\right\}\)

\(= \cfrac { \partial  }{ \partial \, t_c } \left\{ 2m_{ p }\ddot { x } +\cfrac { \partial \, \psi  }{ \partial \, t _c} \cfrac { d\, t_c }{ d\, x }  \right\} =2m_{ p }\dddot { x } +\cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_c } \cfrac { d\, t_c }{ d\, x } +\cfrac { \partial \, \psi  }{ \partial \, t_c } \cfrac { \partial  }{ \partial \, t _c} \left\{ \cfrac { 1 }{ \cfrac { d\, x }{ d\, t _c}  }  \right\} \)

\(\cfrac { \partial  }{ \partial \, \dot { x }  } \left\{\cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_c }\right\}= 2m_{ p }\dddot { x } +\cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_c } \cfrac { d\, t_c }{ d\, x } -\cfrac { \partial \, \psi  }{ \partial \, t_c } \left\{ \cfrac { 1 }{ \left( \cfrac { d\, x }{ d\, t _c}  \right) ^{ 2 } } \cfrac { d^{ 2 }x }{ d\, t^{ 2 }_c }  \right\} \)

So, since \(ic\) is a constant, substitute in (b)

\(ic\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } =2m_{ p }\dddot { x } +\cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_c } \cfrac { d\, t _c}{ d\, x } -\cfrac { \partial \, \psi  }{ \partial \, t_c } \left\{ \cfrac { 1 }{ \left( \cfrac { d\, x }{ d\, t _c}  \right) ^{ 2 } } \cfrac { d^{ 2 }x }{ d\, t^{ 2 }_c }  \right\}\)

\(ic\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } =2m_{ p }\dddot { x } +\cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_c } \cfrac { 1 }{ \dot { x }  } -\cfrac { \partial \, \psi  }{ \partial \, t _c} \left\{ \cfrac { 1 }{ \dot { x } ^{ 2 } } \ddot { x }  \right\} \)

Rearranging the terms,

\(\ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t_c } =-ic\dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } +\dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_c } +2m_{ p }\dot { x } ^{ 2 }\dddot { x } \)

If the field forces are constants in time given location \(x\),  \(\dddot { x }=0\)

\(\ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t _c} =-ic\dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } +\dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_c } \) --- (1)

Consider,

\(\cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 } _c} =\cfrac { \partial \,  }{ \partial \, t_c} \left\{ \cfrac { \partial \, \psi  }{ \partial \, t_c }  \right\} =\cfrac { \partial \,  }{ \partial \, x } \left\{ \cfrac { \partial \, \psi  }{ \partial \, t_c }  \right\} \cfrac { d\, x }{ d\, t_c } +\cfrac { \partial \,  }{ \partial \, \dot { x }  } \left\{ \cfrac { \partial \, \psi  }{ \partial \, t_c }  \right\} \cfrac { d\, \dot { x }  }{ d\, t_c } \)

From previously,

\( \cfrac { \partial  }{ \partial \, \dot { x }  } \left\{ \cfrac { d\, \psi  }{ d\, t_c }  \right\} =2m_{ p }\ddot { x } +\cfrac { \partial \, \psi  }{ \partial \, t_c } \cfrac { d\, t_c }{ d\, x } \)

Therefore,

\( \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_c } =\cfrac { \partial \,  }{ \partial \, x } \left\{ \cfrac { \partial \, \psi  }{ \partial \, t_c }  \right\} \cfrac { d\, x }{ d\, t_c } +\left\{ 2m_{ p }\ddot { x } +\cfrac { \partial \, \psi  }{ \partial \, t _c} \cfrac { d\, t _c}{ d\, x }  \right\} \cfrac { d\, \dot { x }  }{ d\, t _c} \)

\( \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_c } =\cfrac { \partial \,  }{ \partial \, t_c } \left\{ \cfrac { \partial \, \psi  }{ \partial \, x }  \right\} \dot{x} +2m_{ p }\ddot { x } ^{ 2 }+\cfrac { \partial \, \psi  }{ \partial \, t _c} \cfrac { \ddot { x }  }{ \dot { x }  } \)

\(\dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_c } =\cfrac { \partial \,  }{ \partial \, t_c } \left\{ \cfrac { \partial \, \psi  }{ \partial \, x }  \right\} \dot { x } ^{ 2 }+2m_{ p }\dot { x } \ddot { x } ^{ 2 }+\ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t _c} \)

\( \dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 } _c} =\cfrac { \partial \,  }{ \partial \, t _c} \left\{ \cfrac { \partial \, \psi  }{ \partial \, x }  \right\} \dot { x } ^{ 2 }+\ddot { x } \cfrac { \partial \,  }{ \partial \, t _c} \left\{ m_{ p }\dot { x } ^{ 2 } \right\} +\ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t_c } \)

Since,

\( \psi =\cfrac { 1 }{ 2 } m_{ p }\dot { x } ^{ 2 }+V\)

\( m_{ p }\dot { x } ^{ 2 }=2(\psi -V)\)

We have,

\( \dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_c } =\cfrac { \partial \,  }{ \partial \, t_c } \left\{ \cfrac { \partial \, \psi  }{ \partial \, x }  \right\} \dot { x } ^{ 2 }+2\ddot { x } \cfrac { \partial \,  }{ \partial \, t _c} \left\{ \psi -V \right\} +\ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t_c} \)

\(\dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_{ c } } =-\cfrac {i }{ c } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_{ c } } \dot { x } ^{ 2 }+2\ddot { x } \cfrac { \partial \,  }{ \partial \, t_{ c } } \left\{ \cfrac { 3 }{ 2 } \psi -V \right\} \)

\(\dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_{ c } } \left( 1+i\cfrac { \dot { x }  }{ c }  \right) =2\ddot { x } \cfrac { \partial \,  }{ \partial \, t_{ c } } \left\{ \cfrac { 3 }{ 2 } \psi -V \right\} \)

\(\dot { x } \cfrac { \partial ^{ 2 }\psi  }{ \partial \, t^{ 2 }_{ c } } =\cfrac { 2\ddot { x }  }{ \left( 1+i\cfrac { \dot { x }  }{ c }  \right)  } \cfrac { \partial \,  }{ \partial \, t_{ c } } \left\{ \cfrac { 3 }{ 2 } \psi -V \right\} \)

And (1) becomes,

\( \ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t _c} =-ic\dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } +\cfrac { 2\ddot { x }  }{ \left( 1+i\cfrac { \dot { x }  }{ c }  \right)  } \cfrac { \partial \,  }{ \partial \, t _c} \left\{ \cfrac { 3 }{ 2 } \psi -V \right\}\)

\( \ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } \left\{ 1-\cfrac { 3 }{ \left( 1+i\cfrac { \dot { x }  }{ c }  \right)  }  \right\} =-ic\dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } -\cfrac { 2\ddot { x }  }{ \left( 1+i\cfrac { \dot { x }  }{ c }  \right)  } \cfrac { \partial V\,  }{ \partial \, t_{ c } }  \)

\(\ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } \left\{ \cfrac { -2+i\cfrac { \dot { x }  }{ c }  }{ \left( 1+i\cfrac { \dot { x }  }{ c }  \right)  }  \right\} =-ic\dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } -\cfrac { 2\ddot { x }  }{ \left( 1+i\cfrac { \dot { x }  }{ c }  \right)  } \cfrac { \partial V\,  }{ \partial \, t_{ c } }  \)

\(\ddot { x } \left( 2-i\cfrac { \dot { x }  }{ c }  \right) \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =ic\left( 1+i\cfrac { \dot { x }  }{ c }  \right) \dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } +2\ddot { x } \cfrac { \partial V\,  }{ \partial \, t_{ c } } \) --- (**)

This is not a wave in space and time \(t\).

When \(\ddot{x}=0\),

\(ic\left( 1+i\cfrac { \dot { x }  }{ c }  \right) \dot { x } ^{ 2 }\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } =0\)

which implies,

\(\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } =0\)

which means,

\(\cfrac { \partial \psi  }{ \partial \, x }=constant=A\) --- (2)

\(\psi(x)=Ax+C\)

\(\psi(x)\) is linear in space!  If at \(x=0\), \(\psi(0)=C=0\)

\(\psi(x)=Ax \)

\(A\) is then a force and we have simply,

\(Energy=\psi(x)=A.x= Force . distance=Work\)

We started with a particle that might be responsible for gravity or electrostatic force and ended with a simple work done equation.  This means the energy of this particle is just work done against a force.
Here the force is given the definition as rate of change of energy, \(\psi\) with distance \(x\), from (2).

When \(\dot{x}=c\),  which is the case for charges, expression (**) becomes,

\(\ddot { x } \left( 2-i \right) \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =ic^3\left( 1+i \right)\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } +2\ddot { x } \cfrac { \partial V\,  }{ \partial \, t_{ c } } \)

\(\ddot { x } \left( 2-i \right) \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =c^3(-1+i)\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } +2\ddot { x } \cfrac { \partial V\,  }{ \partial \, t_{ c } } \)

Comparing real and imaginary parts,

\( 2\ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =-c^3\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } +2\ddot { x } \cfrac { \partial V\,  }{ \partial \, t_{ c } } \) --- (2)

\( -i\ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =ic^3\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } \)

\( \ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =-c^3\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } \)  substitute into (2)

\( \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =2\cfrac { \partial V\,  }{ \partial \, t_{ c } }  \)  and  \(\cfrac { \partial \, \psi  }{ \partial \, t } =2\cfrac { \partial V\,  }{ \partial \, t }\)

Since, \(\psi=T+V\)

\( \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } =2\cfrac { \partial T\,  }{ \partial \, t_{ c } }  \)  and  \(\cfrac { \partial \, \psi  }{ \partial \, t } =2\cfrac { \partial V\,  }{ \partial \, t }\)

\( \cfrac { \partial \, \psi  }{ \partial \, t_{ c } } \) is divided evenly between \(\cfrac { \partial T\,  }{ \partial \, t_{ c } } \) and \(\cfrac { \partial V\,  }{ \partial \, t_{ c } } \)

From  \(t_c=\cfrac{1}{\sqrt{2}}t.e^{-i\pi/4}\)  and \( \ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t_{ c } }=-c^3\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } } \)

\( \ddot { x } \cfrac { \partial \, \psi  }{ \partial \, t } =-\cfrac{c^3}{\sqrt{2}}\cfrac { \partial ^{ 2 }\psi  }{ \partial \, x^{ 2 } }e^{-i\pi/4} \)

This expression is unit dimension correct.  However, in space and time \(t\), \(\psi\) is not a wave along \(x\) even when \(\dot{x}=c\).