\(\psi=\cfrac{1}{2\mu_o}B^2=-\cfrac{1}{2}\varepsilon_oE^2\)
\(\cfrac{\partial\,\psi}{\partial\,t}=\cfrac { 1 }{ 2\mu _{ o } } \cfrac { \partial B^{ 2 } }{ \partial \, t }=-\cfrac { \varepsilon_o }{ 2 } \cfrac { \partial E^{ 2 } }{ \partial \, t }\)
If \(\psi=e^{iwt}\), just the time component to represent time itself.
\(\cfrac{\partial\,\psi}{\partial\,t}=i\omega e^{i\omega t}=\cfrac { 1 }{ 2\mu _{ o } } \cfrac { \partial B^{ 2 } }{ \partial \, t }=-\cfrac { \varepsilon_o }{ 2 } \cfrac { \partial E^{ 2 } }{ \partial \, t }\)
\(\omega e^{i\omega t}=-i\cfrac { 1 }{ 2\mu _{ o } } \cfrac { \partial B^{ 2 } }{ \partial \, t }=i\cfrac { \varepsilon_o }{ 2 } \cfrac { \partial E^{ 2 } }{ \partial \, t }\)
\(\omega e^{i\omega t}=-i\cfrac{i}{i}\cfrac { 1 }{ 2\mu _{ o } } \cfrac { \partial B^{ 2 } }{ \partial \, t }=i\cfrac{i}{i}\cfrac { \varepsilon_o }{ 2 } \cfrac { \partial E^{ 2 } }{ \partial \, t }\)
\(\omega e^{i\omega t}=\cfrac { 1 }{ 2\mu _{ o } } \cfrac { \partial B^{ 2 } }{ \partial \, it }=-\cfrac{ \varepsilon_o }{ 2 } \cfrac { \partial E^{ 2 } }{ \partial \, it }\)
where \(it\) is the orthogonal charge-time component postulated in the post "Temperature, Space Density And Gravity".
\(\because\,\omega =2\pi f=2\pi \cfrac { c }{ \lambda_t } \)
\( e^{ i\omega t }=\cfrac { \lambda_t }{ 4\pi \mu _{ o }c } \cfrac { \partial B^{ 2 } }{ \partial \, it } =-\cfrac { \lambda_t \varepsilon _{ o } }{ 4\pi c } \cfrac { \partial E^{ 2 } }{ \partial \, it } \)
\( c=\cfrac { 1 }{ \sqrt { \mu _{ o }\varepsilon _{ o } } } \quad Z_{ o }=\sqrt { \cfrac { \mu _{ o } }{ \varepsilon _{ o } } } \)
\( e^{ i\omega t }=\cfrac { \lambda_t }{ 4\pi \mu _{ o }c } \cfrac { \partial B^{ 2 } }{ \partial \, it } =-\cfrac { \lambda_t \varepsilon _{ o } }{ 4\pi c } \cfrac { \partial E^{ 2 } }{ \partial \, it } \)
\( e^{ i\omega t }=\cfrac { \lambda_t }{ 4\pi } \cfrac { 1 }{ Z_{ o } } \cfrac { \partial B^{ 2 } }{ \partial \, it } =-\cfrac { \lambda_t }{ 4\pi } Z_{ o }\cfrac { \partial E^{ 2 } }{ \partial \, it } \)
Let \(it=t_c\),
\( e^{ i\omega t }=\cfrac { \lambda_t }{ 4\pi } \cfrac { 1 }{ Z_{ o } } \cfrac { \partial B^{ 2 } }{ \partial \, t_c } =-\cfrac { \lambda_t }{ 4\pi } Z_{ o }\cfrac { \partial E^{ 2 } }{ \partial \, t_c } \)
or,
\(e^{ i\omega t }=\cfrac { \lambda_t }{ 2\pi c } \cfrac { \partial \psi }{ \partial \, t_{ c } } \)
which requires,
\(1=\cfrac { \lambda_t }{ 2\pi c } . \omega \)
that is always true.
\(\overrightarrow {t}^2=\overrightarrow {t}^2_c+\overrightarrow {t}^2_g\)
This implies,
\(e^{i\omega_ct_c}=\cfrac{1}{\sqrt{2}}e^{i\omega t}.e^{-i\pi/4}=\cfrac{1}{\sqrt{2}}e^{i(\omega t-\pi/4)}\)
\(e^{i\omega_gt_g}=\cfrac{1}{\sqrt{2}}e^{i\omega t}.e^{i\pi/4}=\cfrac{1}{\sqrt{2}}e^{i(\omega t+\pi/4)}\)
and of course,
\(e^{iw_gt_g}=ie^{iw_ct_c}\)
There is no reason not be believe that,
\(\omega_g=\omega_c=\omega\) by symmetry.
And so,
\(\cfrac{\partial}{\partial\,\omega}\left\{e^{i\omega_ct_c}\right\}=\cfrac{\partial}{\partial\,\omega}\left\{e^{i\omega t_c}\right\}=\cfrac{\partial}{\partial\,\omega}\left\{\cfrac{1}{\sqrt{2}}e^{i\omega t}.e^{-i\pi/4}\right\}\)
which implies,
\(t_c=\cfrac{1}{\sqrt{2}}t.e^{-i\pi/4}\)
Generalizing, we have
\(t_g=\cfrac{1}{\sqrt{2}}t.e^{+i\pi/4}\)
\(\cfrac{1}{\sqrt{2}}|t|=|t_c|=|t_g|\)
Which makes us behind \(t_c\) and \(t_g\) in the absolute sense. \(t_c\) lag \(t\) by \(\cfrac{\pi}{4}\) and \(t_g\) leads \(t\) by \(\cfrac{\pi}{4}\) in phase. Time as a wave is a natural vector.