Loading [MathJax]/jax/output/CommonHTML/jax.js

Friday, November 7, 2014

Particle Wave Duality, Seriously MP

From the previous post "Still Not",

ψt=ψxxt+ψxxt=2mμoqx(iv){2Vx2}

Since

ψxxt=ψxiixt=ψxxt

as x=ix, and

xt=iv=ixt,

we have the gradient of the energy density around the particle modeled as a dipole as,

ψx=mμoqx{2Vx2}

The particle has a energy density wave around it and emanating from it along the radial line, The change in energy density with radial distance is given by the above expression.  If we start from a potential minimum,

Vx=0

2Vx2>0

then the energy density around the particle decreases with radial distance away from it.  The total energy in such a scenario is not infinite as,

ψxx=ψ=mμoqx{2Vx2}x

ψ=mμoqxVx2mμoqx2Vxx

ψ=mμoqxVx2mμoqx2V2mμoqx3Vx

Since,

E=Vx=q4πεox2

where E is in the positive x direction, (the negative end of the dipole is spinning behind the positive end; both travelling in the x direction).

V=q4πεox

We have,

ψ=mμoqxq4πεox2+2mμoqx2q4πεox+2mμoqx3q4πεoxx

ψ=m4πμoεox3+m2πμoεox4x=mc24π1x3mc26π1x3

where  1μoεo=c2

ψ=mc212π1x3

and

baψx=mc224π1a2=+finite

where a is the radius of the particle, possibly the radius of the spinning part of the dipole.

A positive finite answer to the last integral suggests that such a energy density field is possible.  From the post "Maybe Not", ψ  exist as waves.  Since such energy density waves (ψ waves) are possible, we can then postulate:

The two energy waves formulated in the post "Maybe Not"; one that envelops the dipole and the other that radiates from it, are the reasons why such a particle has wave property.