g(ϕ,θo)=cos(θo)sin(θo)∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))
g(ϕ,θo)=cot(θo)∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))
where,
h(ϕ,θ)=e−2resin(ϕ/2)aecos(θ)
Consider,
∂g∂θo=∂∂θo{cot(θo)∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))}
∂g∂θo=−csc2(θo)∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))+cot(θo)∂∂θo∫θo01cos4(θ)h(ϕ,θ)(−sin(θ))d(θ)
∂g∂θo=−csc2(θo)∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))−cos(θo)sin(θo)1cos4(θo)h(ϕ,θo)sin(θo)
∂g∂θo=−csc2(θo)∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))−1cos3(θo)h(ϕ,θo)
Consider the extrema,
∂g∂θo=0
1sin2(θo)∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))+1cos3(θo)h(ϕ,θo)=0
Since,
h(ϕ,θ)>0 and g(ϕ,θo)>0 for 0<θo<π/2 and all ϕ
A plot of (1/sin(x))^2 and (1/cos(x))^3 shows that,
which means by itself g(ϕ,θo) has no extrema in the range 0<θo<π/2. Since, its first derivative of g(ϕ,θo) is negative Bo decreasse with (θo). The following diagram shows an orbiting electron driving a B field.
The electron approaches the nucleus because of electrostatic attract, before it collides with the nucleus, the electron reaches the terminal speed (light speed) and begins a helical path towards the nucleus. Right over the nucleus, the relative motion of the revolving electron and the nucleus causes the nucleus to spin. This creates a repulsive Lorentz's force that pushes the particles apart. The electron and nucleus do not collide. As a result of its spin, the nucleus interacts with the B field established by the revolving electron (initially part of its helical path) and revolve around a B orbit. In turn, the revolving nucleus generates a B field that causes the electron to spin and revolve around a second Br orbit (Refer to post "Orbit In Blue"). rp do not effect re in reciprocal. rp is the result of a centripetal force provided for by the B field established by the electron in orbit re. The nucleus will be accelerated to terminal speed and reaches a minimum rp value such that the centripetal force balances the Lorentz's force (B field) and drag at terminal speed. The radius re affects rp; rp does not affects re.
From the post "Electron Orbit B Field II",
Bo=μoεoωr2eEoaef(ϕ)g(ϕ,θo)
We consider Bo at its maximum,
∂Bo∂re=∂∂re{μoεoωr2eEoaef(ϕ)g(ϕ,θo)}
∂Bo∂re=2μoεoωreEoaef(ϕ)g(ϕ,θo)+μoεoωr2eEoaef(ϕ)∂g(ϕ,θo)∂re
∂Bo∂re=μoεoωreEoaef(ϕ)[2g(ϕ,θo)+re∂g(ϕ,θo)∂re]
∂g(ϕ,θo)∂re=cot(θo)∫θo01cos4(θ)∂h(ϕ,θ)∂red(cos(θ))
∂h(ϕ,θ)∂re=e−2resin(ϕ/2)aecos(θ).−2sin(ϕ/2)aecos(θ)=−h(ϕ,θ)2sin(ϕ/2)aecos(θ)
Therefore,
∂g(ϕ,θo)∂re=−cot(θo)∫θo01cos4(θ)h(ϕ,θ)2sin(ϕ/2)aecos(θ)d(cos(θ))
∂g(ϕ,θo)∂re=−2sin(ϕ/2)aecot(θo)∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))
So,
∂Bo∂re=μoεoωreEoaef(ϕ)[2g(ϕ,θo)−re2sin(ϕ/2)aecot(θo)∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))]
For extrema,
∂Bo∂re=0
When
aesin(ϕ/2)g(ϕ,θo)=recot(θo)∫θo01cos5(θ)h(ϕ,θ)d(cos(θ)) --- (*)
re=aesin(ϕ/2)∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))
Consider the second derivative,
∂2Bo∂r2e=2μoεoωEoaef(ϕ)g(ϕ,θo)+2μoεoωreEoaef(ϕ)∂g(ϕ,θo)∂re+2μoεoωreEoaef(ϕ)∂g(ϕ,θo)∂re+μoεoωr2eEoaef(ϕ)∂2g(ϕ,θo)∂r2e
∂2Bo∂r2e=2μoεoωEoaef(ϕ)[g(ϕ,θo)+2re∂g(ϕ,θo)∂re+r2e2∂2g(ϕ,θo)∂r2e]
∂2g(ϕ,θo)∂r2e=(2sin(ϕ/2)ae)2cot(θo)∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))
So,
∂2Bo∂r2e=2μoεoωEoaef(ϕ)[g(ϕ,θo)−re4sin(ϕ/2)aecot(θo)∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))+2r2e(sin(ϕ/2)ae)2cot(θo)∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))]
∂2Bo∂r2e=2μoεoωEoaef(ϕ)cot(θo)[∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))−re4sin(ϕ/2)ae∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))+2r2e(sin(ϕ/2)ae)2∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))]
∂2Bo∂r2e=2μoεoωEoaef(ϕ)cot(θo){Ar2e−Bre+C}
where,
C=∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))
B=4sin(ϕ/2)ae∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))
A=2(sin(ϕ/2)ae)2∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))
A>0 and C>0 for 0<θ<π/2 but B depends on ϕ/2.
B2−4AC=16(sin(ϕ/2)ae)2∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))[∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))−12cot(θo)∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))]
If B2−4AC>0 then ∂2Bo∂r2e can be negative, since A>0 (part of the graph of Ar2e−Bre+C is below the x-axis). However this depends on the value of θo and cot(θo). cot(θo) is a monotonously decreasing function, that means for larger values of θo or rp, Bo is maximum.
Applying the condition for extrema, from (*)
aesin(ϕ/2)g(ϕ,θo)=recot(θo)∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))
aeresin(ϕ/2)∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))=∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))
For a possible maxima in Bo, B2−4AC>0 implies,
aeresin(ϕ/2)−12cot(θo)>0
cot(θo)<2aere1sin(ϕ/2)
θo must be larger than,
θo>cot−1(2aere1sin(ϕ/2))
where ae is the size of the electron and re the electron orbit. By sysmmetry, for the positive nucleus,
θoe>cot−1(2aprp1sin(ϕ/2))
where ap is the size of the nucleus and rp the radius of its orbit and θoe is the angle subtended by the electron's orbit and the moving nucleus as it revolves along it own orbit.
In order to have a maximum Bo which corresponds to a maximum centripetal force, the respective θs have minimum values. A smaller θ means a smaller radius that would require a higher centripetal force which Bo at maximum can not provide for.
The conclusion is, the orbit does not collapse.
From the fist derivative of Bo wrt re,
∂Bo∂re=μoεoωreEoaef(ϕ)[2g(ϕ,θo)−re2sin(ϕ/2)aecot(θo)∫θo01cos5(θ)h(ϕ,θ)d(cos(θ))]
Once again the conclusion is, the orbit does not collapse.