Given any x,
∂x∂x=1
∂2x∂x2=0=∂2x∂x∂t∂t∂x=∂2x∂t∂t∂t∂x∂t∂x=∂2x∂t2∂t∂x∂t∂x
So for all x,
∂2x∂t2∂t∂x∂t∂x=0
ie,
av2=0
In fact,
∂2x∂x2=0
=∂∂x{∂x∂x}
=∂∂t{∂x∂x}∂t∂x
=∂∂t{∂x∂t∂t∂x}∂t∂x
=∂∂t{∂x∂t}∂t∂x+∂∂t{∂t∂x}∂x∂t
=∂2x∂t2∂t∂x−1{∂x∂t}2∂∂t{∂x∂t}∂x∂t
=∂2x∂t2∂t∂x−1{∂x∂t}∂2x∂t2
=∂2x∂t2∂t∂x−∂2x∂t2∂t∂x=0
non sequitur.