Thursday, October 23, 2014

Taking My Time

Given any \(x\),

\(\cfrac { \partial x\,  }{ \partial  x } =1\)

\(\cfrac { \partial ^{ 2 }\, x }{ \partial \, x^{ 2 } } =0=\cfrac { \partial ^{ 2 }\, x }{ \partial \, x\partial t } \cfrac { \partial t\,  }{ \partial \, x } =\cfrac { \partial ^{ 2 }\, x }{ \partial t\partial t } \cfrac { \partial t\,  }{ \partial \, x } \cfrac { \partial t\,  }{ \partial \, x } =\cfrac { \partial ^{ 2 }\, x }{ \partial t^{ 2 } } \cfrac { \partial t\,  }{ \partial \, x } \cfrac { \partial t\,  }{ \partial \, x } \)

So for all \(x\),

\(\cfrac { \partial ^{ 2 }\, x }{ \partial t^{ 2 } } \cfrac { \partial t\,  }{ \partial \, x } \cfrac { \partial t\,  }{ \partial \, x } =0\)

ie,

\(\cfrac{a}{v^2}=0\)

In fact,

\(\cfrac { \partial ^{ 2 }x\quad  }{ \partial \, x^{ 2 } } =0\)

\(=\cfrac { \partial \, \quad  }{ \partial \, x } \{ \cfrac { \partial x\,  }{ \partial \, x } \} \)

\(=\cfrac { \partial \, \quad  }{ \partial \, t } \{ \cfrac { \partial x\,  }{ \partial \, x } \} \cfrac { \partial t\,  }{ \partial \, x } \)

\(=\cfrac { \partial \, \quad  }{ \partial \, t } \{ \cfrac { \partial x\,  }{ \partial \, t } \cfrac { \partial t\,  }{ \partial \, x } \} \cfrac { \partial t\,  }{ \partial \, x } \)

\(=\cfrac { \partial \, \quad  }{ \partial \, t } \{ \cfrac { \partial x\,  }{ \partial \, t } \} \cfrac { \partial t\,  }{ \partial \, x } +\cfrac { \partial \, \quad  }{ \partial \, t } \{ \cfrac { \partial t\,  }{ \partial \, x } \} \cfrac { \partial x\,  }{ \partial \, t } \)

\(= \cfrac { \partial ^{ 2 }x\, \quad  }{ \partial \, t^{ 2 } } \cfrac { \partial t\,  }{ \partial \, x } -\cfrac { 1 }{ \{ \cfrac { \partial x\,  }{ \partial \, t } \} ^{ 2 } } \cfrac { \partial \, \quad  }{ \partial \, t } \{ \cfrac { \partial x\,  }{ \partial \, t } \} \cfrac { \partial x\,  }{ \partial \, t } \)

\(=\cfrac { \partial ^{ 2 }x\, \quad  }{ \partial \, t^{ 2 } } \cfrac { \partial t\,  }{ \partial \, x } -\cfrac { 1 }{ \{ \cfrac { \partial x\,  }{ \partial \, t } \}  } \cfrac { \partial ^{ 2 }x\, \quad  }{ \partial \, t^{ 2 } } \)

\(=\cfrac { \partial ^{ 2 }x\, \quad  }{ \partial \, t^{ 2 } } \cfrac { \partial t\,  }{ \partial \, x } -\cfrac { \partial ^{ 2 }x\, \quad  }{ \partial \, t^{ 2 } } \cfrac { \partial t }{ \partial x }=0 \)

non sequitur.