Loading [MathJax]/jax/output/CommonHTML/jax.js

Wednesday, October 8, 2014

My Very Own Partition...

Consider a function so constructed such that,

Zs=dβef(Es)dEs=βf(Es)ef(Es)

where  β  is a constant,  and  f(Es)  is a function in  Es  with roots  Esi  i=1,2,3....  ie.

f(Es=Esi)=0i=1,2,3...

then

ef(Es=Esi)=e0=1

and,

[dβef(Es)dEs]Esi=βf(Es=Esi).1=Zsi

Since differentiation by product rule leaves behind one term without each root factor, we define,

f(Esi)=p(Zsi).(EsiEs1)(EsiEs2)..

except for the factor of  (EsiEsi) such that,

f(Esi)=p(Zsi).nj=1ji(EsiEsj)=Zsiβ

where  p(Zsi)  is defined by,

p(Zsi)=Zsiβ.nj=1ji(EsiEsj)

where we insist that  EsiEsj  for  ij, each root of  f(Es)  is unique.  p(Zsi)  can also be defined as  p(Esi)  as

p(Es)i(EsEsi)    is zero for all  Es=Esi.  We will still have,

p(Esi)=Zsiβ.nj=1ji(EsiEsj)

β  is defined such that,

Esmax0ZsdEs=Z=[βef(Es)]Esmax0=alliiZsi

β=Z[ef(Es)]Esmax0

If  ef(Esmax)0    for    Esmax

β=Z0ef(0)=Zef(0)

at  ef(Es=0).

Notice the expression for  Z  is always zero integrating from root to root of  f(Es).  This is because  ef(Es)  intersect  y=1  repeatedly such that the area above and below the x-axis of   ef(Es)  is equal, from root to root of  f(Es).  This means, the value of  Z  is determined by that part of the curve from zero to the first root of f(Es)  and, the last root of  f(Es)  to the tail end of  ef(Es)  towards infinity.

If the first root is zero then  β  can be found from,

β=Z0ef(Eslast)=Zef(Eslast)=Z

because we know that the integration of  Zs  with boundaries between roots of  f(Es)  sums to zero.

No need to involve  T,  which ever way temperature is defined.