From the post "Lucy",
\(\tau_o=\cfrac{c^4}{4\pi G}\)=299792458^4/(4*pi*6.67384e-11)=9.632e42 N-1·T2.m-2
where \(G\) is Newton's Gravitational Constant and the unit T is temperature measurement in energy units, which can be converted to J (Joules) or eV.
The value for \(\tau_o\) is very high which makes \(F_T\), the associated thermal repulsive force very small.
If we consider,
\(\cfrac{q^2}{\varepsilon_o}=\cfrac{T_eT_n}{\tau_o}\)
at \(T_c\) from the post "Critical Matter/Anti-Matter Fusion Temperature, \(T_c\)". We can approximate \(T_c\) using,
\(T\propto m\)
\(\cfrac{T_n}{T_e}=\cfrac{m_p}{m_e}\)
\(T_e=\cfrac{m_e}{m_p}T_n\)
\(T_c=T_n+T_e=T_n(1+\cfrac{m_e}{m_p})\)
\(T_{ e }T_{ n }=\cfrac { m_{ e } }{ m_{ p } } T^{ 2 }_{ n }=\cfrac { m_{ e } }{ m_{ p } } (\cfrac { 1 }{ 1+\cfrac { m_{ e } }{ m_{ p } } } )^{ 2 }T^{ 2 }_{ c }=\cfrac { m_{ e }m_{ p } }{ (m_{ e }+m_{ p })^{ 2 } } T^{ 2 }_{ c }\)
then,
\(T^{ 2 }_{ c }=\cfrac { (m_{ e }+m_{ p })^{ 2 } }{ m_{ e }m_{ p } } \cfrac { q^{ 2 } }{ \varepsilon _{ o } } { \tau _{ o } }\)
For one hydrogen atom,
\(T_c\) = (( 9.10938e-31+1.67262e-27)^2/( 9.10938e-31*1.67262e-27)*(1.602176565e-19)^2/8.8541878176e-12*9.632e42)^(1/2)=7.164e9 T or J, Joules
\(T_c\approx\)4.472e28 eV
This value is very high.
And hydrogen is indestructible. It could be that the expression for \(\tau_o\) has been over estimated.