Thursday, October 9, 2014

High Temperature Requires Thick Skin, Very Thick Skin

From the post "Lucy",

\(\tau_o=\cfrac{c^4}{4\pi G}\)=299792458^4/(4*pi*6.67384e-11)=9.632e42 N-1·T2.m-2

where  \(G\)  is Newton's Gravitational Constant and the unit T is temperature measurement in energy units, which can be converted to J (Joules) or eV.

The value for  \(\tau_o\)  is very high which makes  \(F_T\),  the associated thermal repulsive force very small.

If we consider,

\(\cfrac{q^2}{\varepsilon_o}=\cfrac{T_eT_n}{\tau_o}\)

at  \(T_c\) from the post "Critical Matter/Anti-Matter Fusion Temperature, \(T_c\)".  We can approximate  \(T_c\) using,

\(T\propto m\)

\(\cfrac{T_n}{T_e}=\cfrac{m_p}{m_e}\)

\(T_e=\cfrac{m_e}{m_p}T_n\)

\(T_c=T_n+T_e=T_n(1+\cfrac{m_e}{m_p})\)

\(T_{ e }T_{ n }=\cfrac { m_{ e } }{ m_{ p } } T^{ 2 }_{ n }=\cfrac { m_{ e } }{ m_{ p } } (\cfrac { 1 }{ 1+\cfrac { m_{ e } }{ m_{ p } }  } )^{ 2 }T^{ 2 }_{ c }=\cfrac { m_{ e }m_{ p } }{ (m_{ e }+m_{ p })^{ 2 } } T^{ 2 }_{ c }\)

then,

\(T^{ 2 }_{ c }=\cfrac { (m_{ e }+m_{ p })^{ 2 } }{ m_{ e }m_{ p } } \cfrac { q^{ 2 } }{ \varepsilon _{ o } } { \tau _{ o } }\)

For one hydrogen atom,

\(T_c\) = (( 9.10938e-31+1.67262e-27)^2/( 9.10938e-31*1.67262e-27)*(1.602176565e-19)^2/8.8541878176e-12*9.632e42)^(1/2)=7.164e9 T or J, Joules

\(T_c\approx\)4.472e28 eV

This value is very high.

And hydrogen is indestructible.  It could be that the expression for  \(\tau_o\)  has been over estimated.