√B2+r2+√C2+r2−C−B=A
√B2+r2+√C2+r2=A+B+C
√B2+r2−√C2+r2=A+B+C−2√C2+r2
B2−C2=(A+B+C)(A+B+C−2√C2+r2)
B2−C2=(A+B+C)2−2(A+B+C)√C2+r2
√C2+r2=(A+B+C)2−B2+C22(A+B+C)
r2=((A+B+C)2−B2+C2)2−4C2(A+B+C)24(A+B+C)2
={(A+B+C)2−B2+C2+2C(A+B+C)}.{(A+B+C)2−B2+C2−2C(A+B+C)}4(A+B+C)2
={(A+C)2+2B(A+C)+C2+2C(A+B+C)}.{(A+C)2+2B(A+C)+C2−2C(A+B+C)}4(A+B+C)2
r2={A(A+2C)+2C(A+2C)+2B(A+2C)}A{A+2B}4(A+B+C)2
r2=A{A+2B}{A+2C}{A+2(B+C)}4(A+B+C)2
r=√A{A+2B}{A+2C}{A+2(B+C)}2(A+B+C)
r≈√A(2B)(2C)(2(B+C))2(B+C)
r≈√2ABCB+C,A=λ2
r≈√λBCB+C
The carrier destructively interfered. Why would there be alternate paths, other than the straight line?