Saturday, October 11, 2014

The Third Wave

The third wave restates the right hand curl rule that a current loop produces a  \(B\)  field perpendicular to the loop; a loop in the anti-clockwise sense produces a  \(B\)  field toward the observer.

From the previous post "Magnetic Genie",

\(\nabla \times Y=-4\pi \nabla \rho _{ e }-\cfrac { 4\pi  }{ c^2 }\cfrac{\partial \, j_{ e }}{\partial t}\)

If  \(c\)  is upwards, then  \(ic\)  is to the left.  Since  \(\nabla \times Y\)  is in anti-clockwise, then  \(\nabla \rho _{ e }\)  and  \(\cfrac{\partial \, j_{ e }}{\partial t}\)  are both in the clockwise sense because of the negative sign.  This directions are consistent with the right hand rule for finding magnetic field due to a current loop.

A rotating disc with a certain non uniform charge distribution will generate a EMW when rotated...

\(\nabla \times Y=-4\pi \nabla \rho _{ e }\)

The presence of  \(\rho_e\) creates an  \(E\)  field,

\( \nabla .E=4\pi \rho _{ e }\)

A rotating  \(Y\) generates a changing  \(B\) field and a rotating  \(E\) field,

\( -\nabla \times E=-i\cfrac { 1 }{ c } \cfrac { \partial B }{ \partial t } +Y\)

So,

\( -\nabla (\nabla .E)+\nabla ^{ 2 }E=-i\cfrac { 1 }{ c } \cfrac { \partial \nabla \times B }{ \partial t } +\nabla \times Y\)

\( -\nabla (4\pi \rho _{ e })+\nabla ^{ 2 }E=\cfrac { 1 }{ c } \cfrac { \partial (-i\nabla \times B) }{ \partial t } -4\pi \nabla \rho _{ e }\)

But a rotating  \(B\) in turn generates a changing  \(E\) field,

\( -i\nabla \times B=\cfrac { 1 }{ c } \cfrac { \partial E }{ \partial t } \)

And we have

\( \nabla ^{ 2 }E=\cfrac { 1 }{ c } \cfrac { \partial  }{ \partial t } \left\{ \cfrac { 1 }{ c } \cfrac { \partial E }{ \partial t }  \right\} \)

\( \nabla ^{ 2 }E=\cfrac { 1 }{ c^{ 2 } } \cfrac { \partial ^{ 2 }E }{ \partial t^{ 2 } } \)

An  \(E\)  field wave!

Now consider a flat coil spiral disc or a loop carrying currents...

\(\nabla \times Y=-4\pi \nabla \rho _{ e }-\cfrac { 4\pi  }{ c^2 }\cfrac{\partial \, j_{ e }}{\partial t}\)

we will now set  \(-4\pi \nabla \rho _{ e }=0\) and consider only the flow of  \(j_e\)

\(\nabla \times Y=-\cfrac { 4\pi  }{ c^{ 2 } } \cfrac { \partial \, j_{ e } }{ \partial t } \)

We know that  \(j_e\)  creates a changing  \(E\) field and around \(j_e\) a circular  \(B\)  field,

\( -i\nabla \times B=\cfrac { 1 }{ c } \cfrac { \partial E }{ \partial t } +\cfrac { 4\pi  }{ c } j_{ e }\)

Differentiating wrt  \(t\),

\( \cfrac { \partial \,  }{ \partial t } \left\{ -i\nabla \times B \right\} =\cfrac { 1 }{ c } \cfrac { \partial ^{ 2 }E }{ \partial t^{ 2 } } +\cfrac { 4\pi  }{ c } \cfrac { \partial \, j_{ e } }{ \partial t } \) --- (*)

The vortex of  \(Y\)  creates a changing  \(B\)  field and an  \(E\)  field along it circular path,

\( -\nabla \times E=-i\cfrac { 1 }{ c } \cfrac { \partial B }{ \partial t } +Y\)

\( -\nabla (\nabla .E)+\nabla ^{ 2 }E=-i\cfrac { 1 }{ c } \cfrac { \partial \nabla \times B }{ \partial t } +\nabla \times Y\)

But  \( \nabla .E=4\pi \rho _{ e }\)

\( -\nabla (4\pi \rho _{ e })+\nabla ^{ 2 }E=\cfrac { 1 }{ c } \cfrac { \partial (-i\nabla \times B) }{ \partial t } -\cfrac { 4\pi  }{ c^{ 2 } } \cfrac { \partial \, j_{ e } }{ \partial t } \)

Substitute (*) into the above and since we set \( \nabla \rho _{ e }=0\),

\( \nabla ^{ 2 }E=\cfrac { 1 }{ c^2 } \cfrac { \partial ^{ 2 }E }{ \partial t^{ 2 } } \)

And we have a wave.

In both cases we can independently create a EMW, which is expected from superposition.