Continuing from the post "Electron Orbit B Field", we replace
E=e4πεod2 with,
E=Eoe−xae,
where ae is the radius of the electron, and
Eo=e4πεoa2e
This exponential form of E was developed analogously, using exponential gravity as guide.
Total E over flat circular x-section when the charge is at a distance x from the loop,
EA=∫r02πxtan(θ).Eoe−xaecos(θ)dr
EA=2πEo∫r0xtan(θ)e−xaecos(θ)dr
∂EA∂t=2πEo∂∂t∫r0xtan(θ)e−xaecos(θ)dr
Cosinder the term,
Π=∂∂t∫r0xtan(θ)e−xaecos(θ)dr
Π=∫r0dxdttan(θ)e−xaecos(θ)+xtan(θ)e−xaecos(θ)−1aecos(θ)dxdt+xsec2(θ)dθdte−xaecos(θ)dr
Π=∫r0e−xaecos(θ){dxdttan(θ)−xtan(θ)1aecos(θ)dxdt+xsec2(θ)dθdt}dr
Since,
rx=tan(θ)
−rx2dxdt=sec2(θ)dθdt
xsec2(θ)dθdt=−rxdxdt=−dxdttan(θ)
Substitute into the expression for Π,
Π=∫r0e−xaecos(θ){dxdttan(θ)−xtan(θ)1aecos(θ)dxdt−dxdttan(θ)}dr
Π=−dxdtxae∫r0tan(θ)sec(θ)e−xaecos(θ)dr
and
rx=tan(θ)
1x=sec2(θ)dθdr
dr=xsec2(θ)dθ
Π=−dxdtxae∫r0tan(θ)sec(θ)e−xaecos(θ)xsec2(θ)dθ
Substitute Π back into EA,
∂EA∂t=−2πEodxdtxae∫θo0tan(θ)sec(θ)e−xaecos(θ)xsec2(θ)dθ
∂EA∂t=−2πEodxdtx2ae∫θo0sec4(θ)e−xaecos(θ)sin(θ)dθ
∂EA∂t=2πEodxdtx2ae∫θo01cos4(θ)e−xaecos(θ)d(cos(θ)) --- (*)
This however, is not the final solution. We have to consider the fact that the charge is in orbit of radius re and the loop defining B is centered at the circumference along a radial line.
−rx2dxdt=sec2(θ)dθdt
xsec2(θ)dθdt=−rxdxdt=−dxdttan(θ)
Substitute into the expression for Π,
Π=∫r0e−xaecos(θ){dxdttan(θ)−xtan(θ)1aecos(θ)dxdt−dxdttan(θ)}dr
Π=−dxdtxae∫r0tan(θ)sec(θ)e−xaecos(θ)dr
and
rx=tan(θ)
1x=sec2(θ)dθdr
dr=xsec2(θ)dθ
Π=−dxdtxae∫r0tan(θ)sec(θ)e−xaecos(θ)xsec2(θ)dθ
Substitute Π back into EA,
∂EA∂t=−2πEodxdtxae∫θo0tan(θ)sec(θ)e−xaecos(θ)xsec2(θ)dθ
∂EA∂t=−2πEodxdtx2ae∫θo0sec4(θ)e−xaecos(θ)sin(θ)dθ
∂EA∂t=2πEodxdtx2ae∫θo01cos4(θ)e−xaecos(θ)d(cos(θ)) --- (*)
This however, is not the final solution. We have to consider the fact that the charge is in orbit of radius re and the loop defining B is centered at the circumference along a radial line.
We are concerned with change in E perpendicular to the loop.
σ=π−ϕ2=π2−ϕ2
E⊥=Esin(σ)=Esin(π2−ϕ2)=Ecos(ϕ/2)
Consider,
x2=r2e+r2e−2r2ecos(ϕ)=2r2e(1−cos(ϕ)),
x=re√2(1−cos(ϕ))=2resin(ϕ/2)
dxdt=recos(ϕ/2)dϕdt
and,
x⊥=xcos(ϕ/2)
dx⊥dt=dxdtcos(ϕ/2)−xsin(ϕ/2).12dϕdt
dx⊥dt=(recos2(ϕ/2)−xsin(ϕ/2).12)dϕdt
Substitute x into the above.
dx⊥dt=recos(ϕ)dϕdt
Consider the term,x2=r2e+r2e−2r2ecos(ϕ)=2r2e(1−cos(ϕ)),
x=re√2(1−cos(ϕ))=2resin(ϕ/2)
dxdt=recos(ϕ/2)dϕdt
and,
x⊥=xcos(ϕ/2)
dx⊥dt=dxdtcos(ϕ/2)−xsin(ϕ/2).12dϕdt
dx⊥dt=(recos2(ϕ/2)−xsin(ϕ/2).12)dϕdt
Substitute x into the above.
dx⊥dt=recos(ϕ)dϕdt
e−xaecos(θ)=e−re√2(1−cos(ϕ))aecos(θ)=e−2resin(ϕ/2)aecos(θ)
Let
h(ϕ,θ)=e−2resin(ϕ/2)aecos(θ)
which has both ϕ and θ dependence.
From (*),
∂EA∂t=2πEodxdtx2ae∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))
Adjusted for circular orbit,
∂EA∂t=2πEocos(ϕ/2)dx⊥dtx2⊥ae∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))
The direction of E is adjusted by cos(ϕ/2). The the distance term in the exponential remains as x as we see from the above diagram.
Assuming that B is constant around the loop,
∮Bdr=2πrBo
2πrBo=μoεo2πEocos(ϕ/2)dx⊥dtx2⊥ae∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))
This is wrong. r≠x⊥tan(θo) refer to post "Not To Be taken Too Seriously, Please" dated 14 May 2016
x⊥tan(θo)Bo=μoεoEoaecos(ϕ/2)dx⊥dtx2⊥∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))
Bo=μoεoEoaecos(ϕ/2)dx⊥dtx⊥cos(θo)sin(θo)∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))
Consider,
dx⊥dtx⊥=2r2ecos(ϕ/2)sin(ϕ/2)cos(ϕ)dϕdt
Let
f(ϕ)=cos(ϕ/2).2cos(ϕ/2)sin(ϕ/2)cos(ϕ)=12sin(2ϕ)cos(ϕ/2)
such that,
cos(ϕ/2)dx⊥dtx⊥=r2ef(ϕ)dϕdt
And we let,
g(ϕ,θo)=cos(θo)sin(θo)∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))
and
ω=dϕdt
Bo=μoεoEoaecos(ϕ/2)dx⊥dtx⊥cos(θo)sin(θo)∫θo01cos4(θ)h(ϕ,θ)d(cos(θ))
Bo=μoεoωr2eEoaef(ϕ)g(ϕ,θo)
where the term g(ϕ,θo) share the variable ϕ with f(ϕ) through h(ϕ,θo) and the two are not independent.
A plot of f(ϕ) is shown below. f(ϕ) is periodic and bounded.
This shows that the used of the exponential form is appropriate for E.