Friday, October 17, 2014

Electron Orbit B Field II

This post is wrong.  Please refer to the post "Not To Be taken Too Seriously, Please" dated 14 May 2016. 

Continuing from the post "Electron Orbit B Field", we replace

\(E=\cfrac{e}{4\pi\varepsilon_o d^2}\)  with,

\(E=E_oe^{-\cfrac{x}{a_{e}}}\),

where \(a_e\)  is the radius of the electron, and

\(E_o=\cfrac{e}{4\pi\varepsilon_o a^2_e}\)

This exponential form of  \(E\)  was developed analogously, using exponential gravity as guide.


Total  \(E\)  over flat circular x-section when the charge is at a distance  \(x\)  from the loop,

\(E_A=\int_{0}^{r} {2\pi xtan(\theta). E_oe^{-\cfrac{x}{a_{e}cos(\theta)} } }d\,r\)

\(E_{ A }=2\pi E_{ o }\int _{ 0 }^{ r }{ xtan(\theta )e^{-\cfrac{x}{a_{e}cos(\theta)} } } d\, r\)

\(\cfrac { \partial \, E_{ A } }{ \partial t } =2\pi E_{ o }\cfrac { \partial \, }{ \partial t }\int _{ 0 }^{ r }{ xtan(\theta )e^{-\cfrac{x}{a_{e}cos(\theta)} } } d\, r\)

Cosinder the term,

\(\Pi=\cfrac { \partial \, }{ \partial t }\int _{ 0 }^{ r }{ xtan(\theta )e^{-\cfrac{x}{a_{e}cos(\theta)} } } d\, r\)

\( \Pi=\int _{ 0 }^{ r }{ \cfrac { d\, x }{ d\, t } tan(\theta )e^{-\cfrac{x}{a_{e}cos(\theta)} }} \\+xtan(\theta )e^{-\cfrac{x}{a_{e}cos(\theta)} }\cfrac { -1 }{ a_{ e }cos(\theta ) } \cfrac { d\, x }{ d\, t } \\+xsec^{ 2 }(\theta )\cfrac { d\, \theta  }{ d\, t } e^{-\cfrac{x}{a_{e}cos(\theta)} }d\, r\)

\( \Pi=\int _{ 0 }^{ r }{ e^{-\cfrac{x}{a_{e}cos(\theta)} }\left\{ { \cfrac { d\, x }{ d\, t } tan(\theta ) }-xtan(\theta )\cfrac { 1 }{ a_{ e }cos(\theta ) } \cfrac { d\, x }{ d\, t } +xsec^{ 2 }(\theta )\cfrac { d\, \theta  }{ d\, t }  \right\}  } d\, r\)

Since,

\( \cfrac { r }{ x } =tan(\theta )\)

\( -\cfrac { r }{ x^{ 2 } } \cfrac { d\, x }{ d\, t } =sec^{ 2 }(\theta )\cfrac { d\, \theta  }{ d\, t } \)

\(xsec^{ 2 }(\theta )\cfrac { d\, \theta  }{ d\, t }=-\cfrac { r }{ x } \cfrac { d\, x }{ d\, t }=-\cfrac { d\, x }{ d\, t }tan(\theta) \)

Substitute into the expression for  \(\Pi\),

\(\Pi=\int _{ 0 }^{ r }{ e^{-\cfrac{x}{a_{e}cos(\theta)} }\left\{ { \cfrac { d\, x }{ d\, t } tan(\theta ) }-xtan(\theta )\cfrac { 1 }{ a_{ e }cos(\theta ) } \cfrac { d\, x }{ d\, t } -\cfrac { d\, x  }{ d\, t }tan(\theta )  \right\}  } d\, r\)

\( \Pi=-\cfrac { d\, x }{ d\, t } \cfrac { x }{ a_{ e } } \int _{ 0 }^{ r }{ tan(\theta )sec(\theta )e^{-\cfrac{x}{a_{e}cos(\theta)} } } d\, r \)

and

\( \cfrac { r }{ x } =tan(\theta )\)

\( \cfrac { 1 }{ x } =sec^{ 2 }(\theta )\cfrac { d\, \theta  }{ dr } \)

\( dr=xsec^{ 2 }(\theta ){ d\, \theta  }\)

\( \Pi=-\cfrac { d\, x }{ d\, t } \cfrac { x }{ a_{ e } } \int _{ 0 }^{ r }{ tan(\theta )sec(\theta )e^{-\cfrac{x}{a_{e}cos(\theta)} } }xsec^{ 2 }(\theta ){ d\, \theta  } \)

Substitute  \(\Pi\)  back into  \(E_A\),

\(\cfrac { \partial \, E_{ A } }{ \partial t } =-2\pi E_{ o }\cfrac { d\, x }{ d\, t } \cfrac { x }{ a_{ e } } \int _{ 0 }^{ \theta _{ o } }{ tan(\theta )sec(\theta )e^{-\cfrac{x}{a_{e}cos(\theta)} }} xsec^{ 2 }(\theta ){ d\, \theta  }\)

\( \cfrac { \partial \, E_{ A } }{ \partial t } =-2\pi E_{ o }\cfrac { d\, x }{ d\, t } \cfrac { x^{ 2 } }{ a_{ e } } \int _{ 0 }^{ \theta _{ o } }{ sec^{ 4 (\theta )}e^{-\cfrac{x}{a_{e}cos(\theta)} } } sin(\theta ){ d\, \theta  }\)

\( \cfrac { \partial \, E_{ A } }{ \partial t } =2\pi E_{ o }\cfrac { d\, x }{ d\, t } \cfrac { x^{ 2 } }{ a_{ e } } \int _{ 0 }^{ \theta _{ o } }{ \cfrac{1}{cos^{ 4 }(\theta )}e^{-\cfrac{x}{a_{e}cos(\theta)} } } { d\, (cos(\theta )) }\) --- (*)

This however, is not the final solution.  We have to consider the fact that the charge is in orbit of radius  \(r_e\)  and  the loop defining  \(B\) is centered at the circumference along a radial line.


We are concerned with change in  \(E\) perpendicular to the loop.

\(\sigma=\cfrac{\pi-\phi}{2}=\cfrac{\pi}{2}-\cfrac{\phi}{2}\)

\(E_{\bot}=Esin(\sigma)=Esin(\cfrac{\pi}{2}-\cfrac{\phi}{2})=Ecos(\phi/2)\)

Consider,

\(x^2=r^2_e+r^2_e-2r^2_ecos(\phi)=2r^2_e(1-cos(\phi))\),  

\(x=r_e\sqrt{2(1-cos(\phi))}=2r_{ e }sin(\phi /2)\)

\(\cfrac { dx }{ dt }=r_{ e }cos(\phi/2)\cfrac{d\,\phi}{d\,t}\)

and,

\(x_\bot=xcos(\phi/2)\)

\(\cfrac { dx_\bot }{ dt }=\cfrac { dx }{ dt }cos(\phi/2)-xsin(\phi/2).\cfrac{1}{2}\cfrac { d\phi }{ dt }  \)

\(\cfrac { dx_{ \bot  } }{ dt } =\left( r_{ e }cos^{ 2 }(\phi /2)-xsin(\phi /2).\cfrac { 1 }{ 2 }  \right) \cfrac { d\phi  }{ dt } \)

Substitute \(x\) into the above.

\(\cfrac { dx_{ \bot  } }{ dt } =r_{ e }cos(\phi )\cfrac { d\phi  }{ dt } \)

Consider the term,

\(e^{ -\cfrac { x }{ a_{ e }cos(\theta ) }  }=e^{ -\cfrac { r_{ e }\sqrt { 2(1-cos(\phi )) }  }{ a_{ e }cos(\theta ) }  }=e^{ -\cfrac { 2r_{ e }sin(\phi /2) }{ a_{ e }cos(\theta ) }  }\)

Let

\(h(\phi,\theta)=e^{ -\cfrac { 2r_{ e }sin(\phi /2) }{ a_{ e }cos(\theta ) }  }\)

which has both  \(\phi\)  and  \(\theta\)  dependence.

From (*),

\(\cfrac { \partial \, E_{ A } }{ \partial t } =2\pi E_{ o }\cfrac { d\, x }{ d\, t } \cfrac { x^{ 2 } }{ a_{ e } } \int _{ 0 }^{ \theta _{ o } }{ \cfrac{1}{cos^{ 4 }(\theta )}h(\phi,\theta) } { d\, (cos(\theta )) } \)

Adjusted for circular orbit,

\(\cfrac { \partial \, E_{ A } }{ \partial t } =2\pi E_{ o }cos(\phi/2 )\cfrac { d\, x_{ \bot  } }{ d\, t } \cfrac { x^{ 2 }_{ \bot  } }{ a_{ e } } \int _{ 0 }^{ \theta _{ o } }{ \cfrac { 1 }{ cos^{ 4 }(\theta ) } h(\phi,\theta) } { d\, (cos(\theta )) }\)

The direction of  \(E\)  is adjusted by  \(cos(\phi/2)\).  The the distance term in the exponential remains as  \(x\) as we see from the above diagram.

Assuming that  \(B\)  is constant around the loop,

\(\oint{B}d\,r=2\pi rB_o\)

\(2\pi rB_o=\mu _{ o }\varepsilon _{ o }2\pi E_{ o }cos(\phi /2)\cfrac { d\, x_{ \bot  } }{ d\, t } \cfrac { x^{ 2 }_{ \bot  } }{ a_{ e } } \int _{ 0 }^{ \theta _{ o } }{ \cfrac { 1 }{ cos^{ 4 }(\theta ) } h(\phi,\theta)} { d\, (cos(\theta )) }\)

This is wrong. \(r\ne x_\bot tan(\theta _{ o })\) refer to post "Not To Be taken Too Seriously, Please" dated 14 May 2016 

\( x_\bot tan(\theta _{ o })B_{ o }=\cfrac {\mu _{ o }\varepsilon _{ o } E_{ o }  }{ a_{ e } }cos(\phi/2 )\cfrac { d\, x_{ \bot  } }{ d\, t } x^{ 2 }_{ \bot  } \int _{ 0 }^{ \theta _{ o } }{ \cfrac { 1 }{ cos^{ 4 }(\theta ) } h(\phi,\theta)} { d\, (cos(\theta )) }\)

\(B_{ o }=\cfrac { \mu _{ o }\varepsilon _{ o }E_{ o } }{ a_{ e } }cos(\phi/2 )\cfrac { d\, x_{ \bot  } }{ d\, t } x_{ \bot  } \cfrac {cos(\theta_o) }{ sin(\theta _{ o }) } \int _{ 0 }^{ \theta _{ o } }{ \cfrac { 1 }{ cos^{ 4 }(\theta ) } h(\phi,\theta) } { d\, (cos(\theta )) }\)

Consider,

\(\cfrac { d\, x_{ \bot  } }{ d\, t } x_{ \bot  }=2r^{ 2 }_{ e }cos(\phi /2)sin(\phi/2)cos(\phi )\cfrac { d\phi  }{ dt }  \)

Let

\(f(\phi)=cos(\phi /2).2cos(\phi /2)sin(\phi/2)cos(\phi )=\cfrac{1}{2}sin(2\phi)cos(\phi /2)\)

such that,

\(cos(\phi /2)\cfrac { d\, x_{ \bot  } }{ d\, t } x_{ \bot  } =r^2_ef(\phi)\cfrac { d\phi  }{ dt } \)

And we let,

\(g(\phi,\theta_o)= \cfrac { cos(\theta _{ o }) }{ sin(\theta _{ o }) } \int _{ 0 }^{ \theta _{ o } }{ \cfrac { 1 }{ cos^{ 4 }(\theta ) } h(\phi,\theta)} { d\, (cos(\theta )) }\)

and

\(\omega=\cfrac{d\,\phi}{d\,t}\)

\(B_o\)  becomes,

\(B_{ o }=\cfrac {\mu _{ o }\varepsilon _{ o }E_{ o } }{ a_{ e } } cos(\phi /2)\cfrac { d\, x_{ \bot  } }{ d\, t }x_{ \bot  }  \cfrac {cos(\theta_o) }{ sin(\theta _{ o }) } \int _{ 0 }^{ \theta _{ o } }{ \cfrac { 1 }{ cos^{ 4 }(\theta ) } h(\phi,\theta) } { d\, (cos(\theta )) }\)

\(B_{ o }=\cfrac { \mu _{ o }\varepsilon _{ o }\omega r^{ 2 }_{ e }E_{ o } }{ a_{ e } } f(\phi )g(\phi ,\theta _{ o })\)

where the term  \(g(\phi,\theta_o)\)  share the variable  \(\phi\)  with  \(f(\phi)\)  through  \(h(\phi,\theta_o)\)  and the two are not independent.

A plot of  \(f(\phi)\)  is shown below.  \(f(\phi)\) is periodic and bounded.


This shows that the used of the exponential form is appropriate for  \(E\).