Loading [MathJax]/jax/output/CommonHTML/jax.js

Friday, October 17, 2014

Electron Orbit B Field II

This post is wrong.  Please refer to the post "Not To Be taken Too Seriously, Please" dated 14 May 2016. 

Continuing from the post "Electron Orbit B Field", we replace

E=e4πεod2  with,

E=Eoexae,

where ae  is the radius of the electron, and

Eo=e4πεoa2e

This exponential form of  E  was developed analogously, using exponential gravity as guide.


Total  E  over flat circular x-section when the charge is at a distance  x  from the loop,

EA=r02πxtan(θ).Eoexaecos(θ)dr

EA=2πEor0xtan(θ)exaecos(θ)dr

EAt=2πEotr0xtan(θ)exaecos(θ)dr

Cosinder the term,

Π=tr0xtan(θ)exaecos(θ)dr

Π=r0dxdttan(θ)exaecos(θ)+xtan(θ)exaecos(θ)1aecos(θ)dxdt+xsec2(θ)dθdtexaecos(θ)dr

Π=r0exaecos(θ){dxdttan(θ)xtan(θ)1aecos(θ)dxdt+xsec2(θ)dθdt}dr

Since,

rx=tan(θ)

rx2dxdt=sec2(θ)dθdt

xsec2(θ)dθdt=rxdxdt=dxdttan(θ)

Substitute into the expression for  Π,

Π=r0exaecos(θ){dxdttan(θ)xtan(θ)1aecos(θ)dxdtdxdttan(θ)}dr

Π=dxdtxaer0tan(θ)sec(θ)exaecos(θ)dr

and

rx=tan(θ)

1x=sec2(θ)dθdr

dr=xsec2(θ)dθ

Π=dxdtxaer0tan(θ)sec(θ)exaecos(θ)xsec2(θ)dθ

Substitute  Π  back into  EA,

EAt=2πEodxdtxaeθo0tan(θ)sec(θ)exaecos(θ)xsec2(θ)dθ

EAt=2πEodxdtx2aeθo0sec4(θ)exaecos(θ)sin(θ)dθ

EAt=2πEodxdtx2aeθo01cos4(θ)exaecos(θ)d(cos(θ)) --- (*)

This however, is not the final solution.  We have to consider the fact that the charge is in orbit of radius  re  and  the loop defining  B is centered at the circumference along a radial line.


We are concerned with change in  E perpendicular to the loop.

σ=πϕ2=π2ϕ2

E=Esin(σ)=Esin(π2ϕ2)=Ecos(ϕ/2)

Consider,

x2=r2e+r2e2r2ecos(ϕ)=2r2e(1cos(ϕ)),  

x=re2(1cos(ϕ))=2resin(ϕ/2)

dxdt=recos(ϕ/2)dϕdt

and,

x=xcos(ϕ/2)

dxdt=dxdtcos(ϕ/2)xsin(ϕ/2).12dϕdt

dxdt=(recos2(ϕ/2)xsin(ϕ/2).12)dϕdt

Substitute x into the above.

dxdt=recos(ϕ)dϕdt

Consider the term,

exaecos(θ)=ere2(1cos(ϕ))aecos(θ)=e2resin(ϕ/2)aecos(θ)

Let

h(ϕ,θ)=e2resin(ϕ/2)aecos(θ)

which has both  ϕ  and  θ  dependence.

From (*),

EAt=2πEodxdtx2aeθo01cos4(θ)h(ϕ,θ)d(cos(θ))

Adjusted for circular orbit,

EAt=2πEocos(ϕ/2)dxdtx2aeθo01cos4(θ)h(ϕ,θ)d(cos(θ))

The direction of  E  is adjusted by  cos(ϕ/2).  The the distance term in the exponential remains as  x as we see from the above diagram.

Assuming that  B  is constant around the loop,

Bdr=2πrBo

2πrBo=μoεo2πEocos(ϕ/2)dxdtx2aeθo01cos4(θ)h(ϕ,θ)d(cos(θ))

This is wrong. rxtan(θo) refer to post "Not To Be taken Too Seriously, Please" dated 14 May 2016 

xtan(θo)Bo=μoεoEoaecos(ϕ/2)dxdtx2θo01cos4(θ)h(ϕ,θ)d(cos(θ))

Bo=μoεoEoaecos(ϕ/2)dxdtxcos(θo)sin(θo)θo01cos4(θ)h(ϕ,θ)d(cos(θ))

Consider,

dxdtx=2r2ecos(ϕ/2)sin(ϕ/2)cos(ϕ)dϕdt

Let

f(ϕ)=cos(ϕ/2).2cos(ϕ/2)sin(ϕ/2)cos(ϕ)=12sin(2ϕ)cos(ϕ/2)

such that,

cos(ϕ/2)dxdtx=r2ef(ϕ)dϕdt

And we let,

g(ϕ,θo)=cos(θo)sin(θo)θo01cos4(θ)h(ϕ,θ)d(cos(θ))

and

ω=dϕdt

Bo  becomes,

Bo=μoεoEoaecos(ϕ/2)dxdtxcos(θo)sin(θo)θo01cos4(θ)h(ϕ,θ)d(cos(θ))

Bo=μoεoωr2eEoaef(ϕ)g(ϕ,θo)

where the term  g(ϕ,θo)  share the variable  ϕ  with  f(ϕ)  through  h(ϕ,θo)  and the two are not independent.

A plot of  f(ϕ)  is shown below.  f(ϕ) is periodic and bounded.


This shows that the used of the exponential form is appropriate for  E.