Wednesday, October 15, 2014

Séance Won't Help...

If,

\(\cfrac { m_{ e }v^{ 2 } }{ r_{ e } } =Av^{ 2 }+F_{ Le }-F_{ Lp }-F_T\)

\(F_T=\cfrac { T_{ e }T_{ n } }{ 4\pi \tau _{ o }r^{ 2 }_{ e } } \)

\( F_{ Le }=\pi \sum\limits _{ i=1 }^{ n-1 }{ \cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }r^{ 2 }_{ ei } }  }=\sum\limits _{ i=1 }^{ n-1 }{ \cfrac { q^{ 2 } }{ 4\varepsilon _{ o }r^{ 2 }_{ ei } }  } \)

\( F_{ Lp }=\pi \cfrac { nq^{ 2 } }{ 4\pi \varepsilon _{ o }r^{ 2 }_{ e } }=\cfrac { nq^{ 2 } }{ 4 \varepsilon _{ o }r^{ 2 }_{ e } }  \)

the quadratic equation or  \(r_e\)  becomes,

\( (Av^{ 2 }+\sum \limits_{ i=1 }^{ n-1 }{ \cfrac { q^{ 2 } }{ 4\varepsilon _{ o }r^{ 2 }_{ ei } }  } )r^{ 2 }_{ e }-m_{ e }v^{ 2 }r_{ e }-\cfrac { nq^{ 2 } }{ 4 \varepsilon _{ o } }  -\cfrac { T_{ e }T_{ n } }{ 4\pi \tau _{ o } } =0\)

\( (Av^{ 2 }+\sum \limits_{ i=1 }^{ n-1 }{ \cfrac { q^{ 2 } }{ 4\varepsilon _{ o }r^{ 2 }_{ ei } }  } )r^{ 2 }_{ e }-m_{ e }v^{ 2 }r_{ e }-\cfrac { 1 }{ 4 } \left\{ \cfrac { nq^{ 2 } }{ \varepsilon _{ o } } +\cfrac { T_{ e }T_{ n } }{ \pi \tau _{ o } }  \right\} =0\)

The y-intercept is negative always.

If we rearrange the terms again,

\(Av^{ 2 }r^{ 2 }_{ e }-m_{ e }v^{ 2 }r_{ e }+\cfrac { 1 }{ 4 } \left\{ \sum\limits _{ i=1 }^{ n-1 }{ \cfrac { q^{ 2 } }{ \varepsilon _{ o }r^{ 2 }_{ ei } }  } r^{ 2 }_{ e }-\cfrac { nq^{ 2 } }{ \varepsilon _{ o } } -\cfrac { T_{ e }T_{ n } }{ \pi \tau _{ o } }  \right\} =0\)

We may get a zero intercept and even a double root, but the term,

\(\sum \limits_{ i=1 }^{ n-1 }{ \cfrac { q^{ 2 } }{ \varepsilon _{ o }r^{ 2 }_{ ei } }  } r^{ 2 }_{e}\)

that appears as part of the y-intercept is really awkward and wrong.

There is only one thing to do, summon the spirit of Newton,

\(\cfrac { m_{ e }v^{ 2 } }{ r_{ e } } =Av^{ 2 }+F_{ Le }+F_G-F_{ Lp }-F_T\)

\(F_G=G\cfrac{n.m_pm_e}{r^2_e}\)

\( (Av^{ 2 }+\sum \limits_{ i=1 }^{ n-1 }{ \cfrac { q^{ 2 } }{ 4\varepsilon _{ o }r^{ 2 }_{ ei } }  } )r^{ 2 }_{ e }-m_{ e }v^{ 2 }r_{ e }+\cfrac { 1 }{ 4 } \left\{{4nGm_pm_e}- \cfrac { nq^{ 2 } }{ \varepsilon _{ o } } -\cfrac { T_{ e }T_{ n } }{ \pi \tau _{ o } }  \right\} =0\)

then the y-intercept can be zero, positive to allow for two roots of  \(r_e\)  and even positive enough to result in a double root.

If we put in the numbers,  however, it seems that we need a positive attractive force desperately.