Consider an EMW propagating down a sharp point of half angle θθ,
Electric displacement, εEεE perpendicular to the slop boundary is the same. The tangential component of EE is also the same. So, the EE field after the boundary is,
E2f={Esin(θ)}2+{εaεoEcos(θ)}2E2f={Esin(θ)}2+{εaεoEcos(θ)}2
Loss in EE is,
E2loss=E2−E2fE2loss=E2−E2f
E2loss=E2{1−sin2(θ)−(εaεo)2cos2(θ)}E2loss=E2{1−sin2(θ)−(εaεo)2cos2(θ)}
E2loss=E2cos2(θ){1−(εaεo)2}
The perpendicular component of the B field is the same, and the tangential H field is the same
Bcμo=Bsin(θ)μa
The B field after the boundary is,
B2f={Bcos(θ)}2+{μoμaBsin(θ)}2
Loss in B is,
B2loss=B2−B2f
B2loss=B2−({Bcos(θ)}2+{μoμaBsin(θ)}2)
B2loss=B2{1−cos2(θ)−(μoμa)2sin2(θ)}
B2loss=B2sin2(θ){1−(μoμa)2}
Total loss in energy crossing the boundary,
Uloss=12εoE2loss+12μoB2loss
Uloss=12[εoE2cos2(θ){1−(εaεo)2}+μoB2sin2(θ){1−(μoμa)2}]
So what?