Sunday, October 12, 2014

Loss, So What?

Consider an EMW propagating down a sharp point of half angle θθ,


Electric displacement,  εEεE  perpendicular to the slop boundary is the same.  The tangential component of  EE  is also the same.  So, the  EE  field after the boundary is,

E2f={Esin(θ)}2+{εaεoEcos(θ)}2E2f={Esin(θ)}2+{εaεoEcos(θ)}2

Loss in  EE is,

E2loss=E2E2fE2loss=E2E2f

E2loss=E2({Esin(θ)}2+{εaεoEcos(θ)}2)E2loss=E2({Esin(θ)}2+{εaεoEcos(θ)}2)

E2loss=E2{1sin2(θ)(εaεo)2cos2(θ)}E2loss=E2{1sin2(θ)(εaεo)2cos2(θ)}

E2loss=E2cos2(θ){1(εaεo)2}

The perpendicular component of the  B  field is the same, and the tangential  H field is the same

Bcμo=Bsin(θ)μa

The  B  field after the boundary is,

B2f={Bcos(θ)}2+{μoμaBsin(θ)}2

Loss in  B is,

B2loss=B2B2f

B2loss=B2({Bcos(θ)}2+{μoμaBsin(θ)}2)

B2loss=B2{1cos2(θ)(μoμa)2sin2(θ)}

B2loss=B2sin2(θ){1(μoμa)2}

Total loss in energy crossing the boundary,

Uloss=12εoE2loss+12μoB2loss

Uloss=12[εoE2cos2(θ){1(εaεo)2}+μoB2sin2(θ){1(μoμa)2}]

So what?