Loading [MathJax]/jax/output/CommonHTML/jax.js

Sunday, October 12, 2014

Loss, So What?

Consider an EMW propagating down a sharp point of half angle θ,


Electric displacement,  εE  perpendicular to the slop boundary is the same.  The tangential component of  E  is also the same.  So, the  E  field after the boundary is,

E2f={Esin(θ)}2+{εaεoEcos(θ)}2

Loss in  E is,

E2loss=E2E2f

E2loss=E2({Esin(θ)}2+{εaεoEcos(θ)}2)

E2loss=E2{1sin2(θ)(εaεo)2cos2(θ)}

E2loss=E2cos2(θ){1(εaεo)2}

The perpendicular component of the  B  field is the same, and the tangential  H field is the same

Bcμo=Bsin(θ)μa

The  B  field after the boundary is,

B2f={Bcos(θ)}2+{μoμaBsin(θ)}2

Loss in  B is,

B2loss=B2B2f

B2loss=B2({Bcos(θ)}2+{μoμaBsin(θ)}2)

B2loss=B2{1cos2(θ)(μoμa)2sin2(θ)}

B2loss=B2sin2(θ){1(μoμa)2}

Total loss in energy crossing the boundary,

Uloss=12εoE2loss+12μoB2loss

Uloss=12[εoE2cos2(θ){1(εaεo)2}+μoB2sin2(θ){1(μoμa)2}]

So what?