Consider an EMW propagating down a sharp point of half angle θ,
Electric displacement, εE perpendicular to the slop boundary is the same. The tangential component of E is also the same. So, the E field after the boundary is,
E2f={Esin(θ)}2+{εaεoEcos(θ)}2
Loss in E is,
E2loss=E2−E2f
E2loss=E2{1−sin2(θ)−(εaεo)2cos2(θ)}
E2loss=E2cos2(θ){1−(εaεo)2}
The perpendicular component of the B field is the same, and the tangential H field is the same
Bcμo=Bsin(θ)μa
The B field after the boundary is,
B2f={Bcos(θ)}2+{μoμaBsin(θ)}2
Loss in B is,
B2loss=B2−B2f
B2loss=B2−({Bcos(θ)}2+{μoμaBsin(θ)}2)
B2loss=B2{1−cos2(θ)−(μoμa)2sin2(θ)}
B2loss=B2sin2(θ){1−(μoμa)2}
Total loss in energy crossing the boundary,
Uloss=12εoE2loss+12μoB2loss
Uloss=12[εoE2cos2(θ){1−(εaεo)2}+μoB2sin2(θ){1−(μoμa)2}]
So what?