Loading [MathJax]/jax/output/CommonHTML/jax.js

Thursday, October 16, 2014

Electron Orbit B Field..BLEWUP

What is the  B  field established by an electron in orbit.

From Maxwell,

Bdr=εoμot{EdA}


E=e4πεod2


Total  E  over flat circular x-section when the charge is at a distance  x  from the loop,

EA=r02πxtan(θ).e4πεo(cos(θ)x)2dr

EAt=e2εot{r0sin(θ)cos(θ).1xdr}

EAt=e4εot{r0sin(2θ)1xdr}

EAt=e4εo{r02cos(2θ)1xdθdtsin(2θ)1x2dxdtdr}

EAt=e2εo{r0(2cos2(θ)1)1xdθdtsin(θ)cos(θ)1x2dxdtdr}

From geometry,

rx=tan(θ)

rx2dxdt=sec2(θ)dθdt

dθdt=rcos2(θ)x2dxdt

and

1x=sec2(θ)dθdr

dr=xsec2(θ)dθ

So we have,

EAt=e2εo{r0(2cos2(θ)1)1xrcos2(θ)x2dxdtsin(θ)cos(θ)1x2dxdtdr}

EAt=e2εo1x2dxdt{r0(2cos2(θ)1)tan(θ)cos2(θ)sin(θ)cos(θ)dr}

EAt=e2εo1x2dxdt{r02cos2(θ)sin(θ)cos(θ)dr}

EAt=e2εo1xdxdt{θo0cos2(θ)sin(2θ)sec2(θ)dθ}

EAt=e2εo1xdxdt{θo0sin(2θ)dθ}

EAt=e4εo1xdxdt{cos(2θo)1} --- (*)

We have also to consider the fact that the charge is in orbit of radius  re  and  the loop defining  B is centered at the circumference along a radial line.


σ=πϕ2=π2ϕ2

sin(σ)=sin(π2ϕ2)=cos(ϕ/2)

E=Esin(σ)=Ecos(ϕ/2)

x=xsin(σ)=xcos(ϕ/2)

We are concerned with the change in E perpendicular to the smaller orbit in the loop.   From (*)

EAt=e2εodxdt1x{cos(2θo)1}

 So the equation (*) becomes,

EAt=e2εosin(σ)dxdt1x{cos(2θo)1}

 EAt=e2εocos(ϕ/2)dxdt1x{cos(2θo)1}  --- (1)

The perpendicular E field component is given by E=Ecos(ϕ/2), not by changing  x  to x.

Consider,

x2=r2e+r2e2r2ecos(ϕ)=2r2e(1cos(ϕ)),  

x=re2(1cos(ϕ))=2resin(ϕ/2)

dxdt=recos(ϕ/2)dϕdt

and,

x=xcos(ϕ/2)

dxdt=dxdtcos(ϕ/2)xsin(ϕ/2).12dϕdt

dxdt=(recos2(ϕ/2)xsin(ϕ/2).12)dϕdt

Substitute x into the above.

dxdt=recos(ϕ)dϕdt

dxdt1x=re12resin(ϕ/2)cos(ϕ)dϕdt

dxdt1x=12cos(ϕ)sin(ϕ/2)dϕdt

From (1),

 EAt=e2εocos(ϕ/2)dxdt1x{cos(2θo)1}

EAt=e4εocos(ϕ/2)12cos(ϕ)sin(ϕ/2)dϕdt{cos(2θo)1}

We know at this point that B is going to blowup when integrated over  ϕ.  This suggests that  1x2 is not approprite here.

Assuming that  B  is constant around the loop,

Bdr=2πrpBo

where rp is the radius of the B orbit.

2πrpBo=μoεoEAt=μoe4cos(ϕ/2){1sin(ϕ/2)2sin(ϕ/2)}dϕdt{cos(2θo)1}

Bo=μoe8πrpcos(ϕ/2){1sin(ϕ/2)2sin(ϕ/2)}dϕdt{cos(2θo)1}

This is a time varying B  field, changing as the electron travels at  ω=dϕdt around its orbit.  We can average B2 over one period to obtain the energy in needed to establish the orbit.

 1TT0B2odt=1TT0(μoe8πrpsin2(θo))2(cos(ϕ/2){1sin(ϕ/2)2sin(ϕ/2)})2dϕdtdϕdt

=1T(μoe8πrpsin2(θo))22π0(cos(ϕ/2){1sin(ϕ/2)2sin(ϕ/2)})2ωdϕ

as ω=dϕdt.

Consider,

2π0(cos(ϕ/2){1sin(ϕ/2)2sin(ϕ/2)})2ωdϕ

KABOOM!!