From Maxwell,
∮Bdr=εoμo∂∂t{∮EdA}
E=e4πεod2
Total E over flat circular x-section when the charge is at a distance x from the loop,
EA=∫r02πxtan(θ).e4πεo(cos(θ)x)2dr
∂EA∂t=e2εo∂∂t{∫r0sin(θ)cos(θ).1xdr}
∂EA∂t=e4εo∂∂t{∫r0sin(2θ)1xdr}
∂EA∂t=e4εo{∫r02cos(2θ)1xdθdt−sin(2θ)1x2dxdtdr}
∂EA∂t=e2εo{∫r0(2cos2(θ)−1)1xdθdt−sin(θ)cos(θ)1x2dxdtdr}
From geometry,
rx=tan(θ)
−rx2dxdt=sec2(θ)dθdt
dθdt=−rcos2(θ)x2dxdt
and
1x=sec2(θ)dθdr
dr=xsec2(θ)dθ
So we have,
∂EA∂t=e2εo{∫r0−(2cos2(θ)−1)1xrcos2(θ)x2dxdt−sin(θ)cos(θ)1x2dxdtdr}
∂EA∂t=e2εo1x2dxdt{∫r0−(2cos2(θ)−1)tan(θ)cos2(θ)−sin(θ)cos(θ)dr}
∂EA∂t=−e2εo1x2dxdt{∫r02cos2(θ)sin(θ)cos(θ)dr}
∂EA∂t=−e2εo1xdxdt{∫θo0cos2(θ)sin(2θ)sec2(θ)dθ}
∂EA∂t=−e2εo1xdxdt{∫θo0sin(2θ)dθ}
∂EA∂t=e4εo1xdxdt{cos(2θo)−1} --- (*)
We have also to consider the fact that the charge is in orbit of radius re and the loop defining B is centered at the circumference along a radial line.
σ=π−ϕ2=π2−ϕ2
sin(σ)=sin(π2−ϕ2)=cos(ϕ/2)
E⊥=Esin(σ)=Ecos(ϕ/2)
x⊥=xsin(σ)=xcos(ϕ/2)
We are concerned with the change in E perpendicular to the smaller orbit in the loop. From (*)
∂EA∂t=e2εodxdt1x{cos(2θo)−1}
So the equation (*) becomes,
∂EA∂t=e2εosin(σ)dx⊥dt1x{cos(2θo)−1}
∂EA∂t=e2εocos(ϕ/2)dx⊥dt1x{cos(2θo)−1} --- (1)
The perpendicular E field component is given by E⊥=Ecos(ϕ/2), not by changing x to x⊥.
Consider,
x2=r2e+r2e−2r2ecos(ϕ)=2r2e(1−cos(ϕ)),
x=re√2(1−cos(ϕ))=2resin(ϕ/2)
dxdt=recos(ϕ/2)dϕdt
and,
x⊥=xcos(ϕ/2)
dx⊥dt=dxdtcos(ϕ/2)−xsin(ϕ/2).12dϕdt
dx⊥dt=(recos2(ϕ/2)−xsin(ϕ/2).12)dϕdt
Substitute x into the above.
dx⊥dt=recos(ϕ)dϕdt
dx⊥dt1x=re12resin(ϕ/2)cos(ϕ)dϕdt
dx⊥dt1x=12cos(ϕ)sin(ϕ/2)dϕdt
From (1),
∂EA∂t=e2εocos(ϕ/2)dx⊥dt1x{cos(2θo)−1}
∂EA∂t=e4εocos(ϕ/2)12cos(ϕ)sin(ϕ/2)dϕdt{cos(2θo)−1}
We know at this point that B is going to blowup when integrated over ϕ. This suggests that 1x2 is not approprite here.
Assuming that B is constant around the loop,
∮Bdr=2πrpBo
where rp is the radius of the B orbit.
2πrpBo=μoεo∂EA∂t=μoe4cos(ϕ/2){1sin(ϕ/2)−2sin(ϕ/2)}dϕdt{cos(2θo)−1}
Bo=μoe8πrpcos(ϕ/2){1sin(ϕ/2)−2sin(ϕ/2)}dϕdt{cos(2θo)−1}
This is a time varying B field, changing as the electron travels at ω=dϕdt around its orbit. We can average B2 over one period to obtain the energy in needed to establish the orbit.
1T∫T0B2odt=1T∫T0(μoe8πrpsin2(θo))2(cos(ϕ/2){1sin(ϕ/2)−2sin(ϕ/2)})2dϕdtdϕdt
=1T(μoe8πrpsin2(θo))2∫2π0(cos(ϕ/2){1sin(ϕ/2)−2sin(ϕ/2)})2ωdϕ
as ω=dϕdt.
Consider,
∫2π0(cos(ϕ/2){1sin(ϕ/2)−2sin(ϕ/2)})2ωdϕ
KABOOM!!
as ω=dϕdt.
Consider,
∫2π0(cos(ϕ/2){1sin(ϕ/2)−2sin(ϕ/2)})2ωdϕ
KABOOM!!