Loading [MathJax]/jax/output/CommonHTML/jax.js

Sunday, October 26, 2014

Ionization Redefined

If the force between an orbiting electron and the nucleus is repulsive what then is ionization energy, Ei?

Ei=mec2{ln(reoref)+1refrefreo(refreo)}q24εo1re+Gmamere+reneq24εorre{(2ae)2+(rre)2}3/2dr

The terms are,

mec2{ln(rporpf)+1rpfrpfrpo(rpfrpo)}  

work done against the centripetal force, while the circular velocity remains constant.


q24εo1re

work recovered from the repulsive force of the nucleus B orbit.

Gmamere

work done against gravitational attraction.

and

reneq24εorre{(2ae)2+(rre)2}3/2dr

=neq24εo14a2e=neq24εo12ae

work done against the attraction of neighboring electron B orbits.

The work against centripetal force explodes immediately.  The centripetal force is provided by drag at terminal velocity.  Work done against the centripetal force is essentially work against drag.  The electron gains velocity initially as a result of electrostatic attraction.  Upon achieving light speed, drag curls its path into a helix. The electron perform circular motion in the plane perpendicular to its direction of travel.

To resolve this issue, we see that this work is zero for incremental change in ref, ie. when

ref=reo+Δr    as  Δr0

this work is zero.  In other words, move slowly lo.

And we are left with,

Ei=q24εo1re+Gmamere+neq24εo12ae

Ei=Gmamere+q24εo{ne2ae1re}

which boldly is the new expression for ionization energy.  ne is the number of electrons in the stack minus one,  ae is the radius of an electron and  ma is the mass of the nucleus.