Sunday, October 12, 2014

So, So, So What?

From the post "So, So What?",

\(\cfrac { \partial ^{ 2 }\, U_{ loss } }{ \partial \, \theta ^{ 2 } } =cos(2\theta )\left[ \mu _{ o }B^{ 2 }\left\{ 1-(\cfrac { \mu _{ o } }{ \mu _{ a } } )^{ 2 } \right\} -\varepsilon _{ o }E^{ 2 }\left\{ 1-(\cfrac { \varepsilon _{ a } }{ \varepsilon _{ o } } )^{ 2 } \right\}  \right] \)

then we come to the term,

\(\left[ \mu _{ o }B^{ 2 }\left\{ 1-(\cfrac { \mu _{ o } }{ \mu _{ a } } )^{ 2 } \right\} -\varepsilon _{ o }E^{ 2 }\left\{ 1-(\cfrac { \varepsilon _{ a } }{ \varepsilon _{ o } } )^{ 2 } \right\}  \right] \)

which we observe, flips the sign of the expression with increasing  \(E\).  An increase in  \(E\)  can switch the system from minimum loss to maximum loss.

So, a pointy antenna has low loss only if  \(E\)  is keep within a range,

 \(E^{ 2 }<B^{ 2 }\cfrac { \mu _{ o } }{ \varepsilon _{ o } } \frac { \left\{ 1-(\cfrac { \mu _{ o } }{ \mu _{ a } } )^{ 2 } \right\}  }{ \left\{ 1-(\cfrac { \varepsilon _{ a } }{ \varepsilon _{ o } } )^{ 2 } \right\}  } \)

And as long as  \(E\) is kept high, a flat antenna has minimum loss,

\(B^{ 2 }<E^{ 2 }\cfrac { \varepsilon _{ o } }{ \mu _{ o } } \frac { \left\{ 1-(\cfrac { \varepsilon _{ a } }{ \varepsilon _{ o } } )^{ 2 } \right\}  }{ \left\{ 1-(\cfrac { \mu _{ o } }{ \mu _{ a } } )^{ 2 } \right\}  } \)

So, So, So, What?