Saturday, October 11, 2014

Magnetic Genie

Someone has a fantasy for a magnetic monopole,

\(\nabla .E=4\pi \rho _{ e }\)

\( \nabla .B=4\pi \rho _{ m }\)

\( -\nabla \times E=\cfrac { 1 }{ c } \cfrac { \partial B }{ \partial t } +\cfrac { 4\pi  }{ c } j_{ m }\)

\( \nabla \times B=\cfrac { 1 }{ c } \cfrac { \partial E }{ \partial t } +\cfrac { 4\pi  }{ c } j_{ e }\)

Let's see, maybe we should start with,

\(\nabla .E=4\pi \rho _{ e }\)

\( \nabla .B=X\)

\( -\nabla \times E=-i\cfrac { 1 }{ c } \cfrac { \partial B }{ \partial t } +Y\)

\( -i\nabla \times B=\cfrac { 1 }{ c } \cfrac { \partial E }{ \partial t } +\cfrac { 4\pi  }{ c } j_{ e }\)

and solve for  \(X\)  and  \(Y\).  \(-i\)  has been added to explicitly denote the directional relationship between  \(E\)  and  \(B\).

First of all,

\( \nabla .\nabla \times E=0=\nabla.(i\cfrac { 1 }{ c } \cfrac { \partial B }{ \partial t } +Y)\)

\(i\cfrac { 1 }{ c } \cfrac { \partial \nabla.B }{ \partial t } +i\nabla.\cfrac{ 1 }{ c } \cfrac { \partial B }{ \partial t } +\nabla.Y=0\)

since,  \(\nabla.\cfrac{ 1 }{ c } =0\)

\(i\cfrac { 1 }{ c } \cfrac { \partial X }{ \partial t } = \nabla.Y\) --- (1)

and

\( \nabla\times(-i\nabla \times B)=\nabla\times(\cfrac { 1 }{ c } \cfrac { \partial E }{ \partial t } +\cfrac { 4\pi  }{ c } j_{ e })\)

since,

\(\nabla\times\cfrac { 1 }{ c }=0\)  and  \(\nabla\times\cfrac { 4\pi  }{ c }=0\)

\(-i\nabla(\nabla.B)+i\nabla^2B=\cfrac { 1 }{ c } \cfrac { \partial(\nabla\times E) }{ \partial t }+\cfrac { 4\pi  }{ c }\nabla\times j_{ e }\)

since

\( \nabla .B=X\)

\(-i\nabla X+i\nabla^2B=\cfrac { 1 }{ c } \cfrac { \partial}{ \partial t }\left\{i\cfrac { 1 }{ c } \cfrac { \partial B }{ \partial t } +Y\right\}+\cfrac { 4\pi  }{ c }\nabla\times j_{ e }\)

\(-i\nabla X+i\nabla^2B=i\cfrac { 1 }{ c^2 }  \cfrac { \partial^2 B }{ \partial t^2 } +\cfrac { 1 }{ c }\cfrac { \partial Y}{ \partial t }+\cfrac { 4\pi  }{ c }\nabla\times j_{ e }\)

We recognize that,

\(\nabla^2B=\cfrac { 1 }{ c^2 }  \cfrac { \partial^2 B }{ \partial t^2 }\)

is the wave equation that was derived in the post  "Whacko and the Free Photons".

\(-i\nabla X=\cfrac { 1 }{ c }\cfrac { \partial Y}{ \partial t }+\cfrac { 4\pi  }{ c }\nabla\times j_{ e }\)

\(\nabla\times j_{ e }\)  suggests that a looped charge density creates a  \(\nabla.X\) component, which is consistent with a  \(B\) field being created by a circular current.  We can set  \(j_e\)  to zero and use superposition later.

\(-i\nabla X=\cfrac { 1 }{ c }\cfrac { \partial Y}{ \partial t }\) --- (2)

From (1),

\(i\cfrac { 1 }{ c } \cfrac { \partial \nabla.B }{ \partial t } = \nabla.Y\)

\(-i\cfrac { 1 }{ c }(- \cfrac { \partial B }{ \partial t }) = Y\) --- (*)

From (2),

\(-i\nabla^2.B=\cfrac { 1 }{ c }\cfrac { \partial }{ \partial t }\left\{i\cfrac { 1 }{ c }\cfrac { \partial B }{ \partial t } \right\}\) 

\(\nabla^2.B=-\cfrac { 1 }{ c^2 }\cfrac { \partial^2B }{ \partial t^2 }\)

\(\nabla^2.B=\cfrac { 1 }{ (ic)^2 }\cfrac { \partial^2B }{ \partial t^2 }\)

A wave in the \(ic\) direction, ie. a wave perpendicular to  \(c\),  the wave in the previous wave equation.  If  \(X\)  exist, then there is a second wave perpendicular to the normal electromagnetic wave.

Furthermore,

\(\nabla^2.(\nabla.B)=\cfrac { 1 }{ (ic)^2 }\cfrac { \partial^2\nabla.B }{ \partial t^2 }\)

\(\nabla^2 X=\cfrac { 1 }{ (ic)^2 }\cfrac { \partial^2X }{ \partial t^2 }\)

There is also a  \(X\)  wave in the perpendicular direction.  A third wave!

Differentiating (2)  wrt  \(t\),

\(-i\nabla .\cfrac { \partial X }{ \partial t } =\cfrac { 1 }{ c } \cfrac { \partial ^{ 2 }Y }{ \partial t^{ 2 } } \)

Substitute (1) in,

\(-\nabla .(c\nabla .Y)=\cfrac { 1 }{ c } \cfrac { \partial ^{ 2 }Y }{ \partial t^{ 2 } } \)

\(\nabla ^{ 2 }Y=\cfrac { 1 }{ (ic)^{ 2 } } \cfrac { \partial ^{ 2 }Y }{ \partial t^{ 2 } } \)

We only have a third wave because  \(Y\)  and  \(X\)  are related.

Consider,

\( \nabla\times(-\nabla \times E)=\nabla\times(-i\cfrac { 1 }{ c } \cfrac { \partial B }{ \partial t } +Y)\)

\(-\nabla (\nabla .E)+\nabla ^{ 2 }E=-i\cfrac { 1 }{ c } \cfrac { \partial \nabla \times B }{ \partial t } +\nabla \times Y\)

since,

\(\nabla .E=4\pi \rho _{ e }\)

\( -4\pi \nabla \rho _{ e }+\nabla ^{ 2 }E=-i\cfrac { 1 }{ c } \cfrac { \partial  }{ \partial t } \left\{ i\cfrac { 1 }{ c } \cfrac { \partial E }{ \partial t }+i\cfrac { 4\pi  }{ c } j_{ e }  \right\} +\nabla \times Y\)

\(-4\pi \nabla \rho _{ e }+\nabla ^{ 2 }E=\cfrac { 1 }{ c^{ 2 } } \cfrac { \partial ^{ 2 }E }{ \partial t^{ 2 } }+\cfrac { 4\pi  }{ c^2 }\cfrac{\partial \, j_{ e }}{\partial t} +\nabla \times Y\)

Since,

\(\nabla ^{ 2 }E=\cfrac { 1 }{ c^{ 2 } } \cfrac { \partial ^{ 2 }E }{ \partial t^{ 2 } } \)

\(\nabla \times Y=-4\pi \nabla \rho _{ e }-\cfrac { 4\pi  }{ c^2 }\cfrac{\partial \, j_{ e }}{\partial t}\)

The first factor suggests  \(Y\)  is because the distribution of  \(\rho_e\)  form a loop or vortex.  The second factor suggests the current density flow forms a loop or vortex.  Both of which establishes a \(B\) field.

From (2),

\(\nabla X=i\cfrac { 1 }{ c }\cfrac { \partial Y}{ \partial t }\)

And the spread of  \(X\)  is the result of changing  \(Y\)  over time as the wave passes.

No magnetic monopole here just loops and vortexes,