Friday, July 1, 2016

Why \(\mu_o\)?

If we have mistaken,

\(\cfrac{1}{4\pi r^2}\cfrac{q|_{a_\psi}}{\varepsilon_o}=F_{newton}\)

then effectively

\(\cfrac{1}{4\pi r^2}\cfrac{q|_{a_\psi}}{\varepsilon_o.c}=F_{newton}\)

that

\(\varepsilon_o\rightarrow \varepsilon_o^{*}.c\)

in which case,

\({\varepsilon_o^{*}.c}=\cfrac{1}{2c^2ln(cosh(\theta_{\psi}))}\)

\({\varepsilon_o^{*}}=\cfrac{1}{2c^3ln(cosh(\theta_{\psi}))}\)

\(c=\cfrac{1}{\sqrt[3]{2ln(cosh(\theta_{\psi})).\varepsilon_o^{*}}}=\cfrac{1}{\sqrt{\mu_o\varepsilon_o^{*}}}=\cfrac{1}{\sqrt{\varepsilon_o2ln(cosh(\theta_{\psi}))}}\) --- (*)

\(\mu_o\) in the denominator is first cube rooted then squared then divided by \(2ln(cosh(\theta_{\psi}))\).  The far right hand side, is the actual measured term, and has the factor \(2ln(cosh(\theta_{\psi}))\).  The mistaken theoretical term involving \(\varepsilon_o^{*}\) does not, so \(\mu_o\) inserted into the expression is divided by \(2ln(cosh(\theta_{\psi}))\).

With the result,

\({\varepsilon_o}=\cfrac{1}{2c^2ln(cosh(\theta_{\psi}))}\) 

when \(\varepsilon_o\rightarrow \varepsilon_o^{*}.c\), we have

\({\varepsilon_o^{*}.c}=\cfrac{1}{2c^2ln(cosh(\theta_{\psi}))}\) 

Multiplied by \(\mu_o\),

\({\mu_o\varepsilon_o^{*}.c}=\mu_o.\cfrac{1}{2c^2ln(cosh(\theta_{\psi}))}.c\)

if this were to be

\(\mu_o\varepsilon_o=\cfrac{1}{c^2}\)

\(\mu_o.\cfrac{1}{2c^2ln(cosh(\theta_{\psi}))}.c=\cfrac{1}{c^2}\)

\(\mu_o=\cfrac{2ln(cosh(\theta_{\psi}))}{c}\)

such that we move the measured results to the mistaken theoretical expression of \(\cfrac{1}{c^2}\).

So when we apply information in (*) to the \(\mu_o\) above,

\(\mu_o=\cfrac{1}{2ln(cosh(\theta_{\psi}))}\left(\sqrt[3]{\cfrac{2ln(cosh(\theta_{\psi}))}{c}}\right)^2\)

\(\mu_o=\left(\cfrac{1}{c\sqrt{2ln(cosh(\theta_{\psi}))}}\right)^{2/3}\)

when \(\theta_{\psi}=3.135009\),

\(\mu_o=1.315500e-6\)

The defined value of \(\mu_o\) is \(\mu_o=1.256637e-6\)

Which is interesting.  \(\mu_o\) may have originated in the mistake in \(c\) in,

\(\cfrac{1}{4\pi r^2}\cfrac{q|_{a_\psi}}{\varepsilon_o}=F.c\ne F_{newton}\)