Loading [MathJax]/jax/output/CommonHTML/jax.js

Thursday, July 21, 2016

Earth Shield Frequency

From the post "A Shield" dated 27 May 2016,

fres=12πgradient|πm=12πG2sech2(π)m=sech(π)2πGm

G=π2mc2ae

aE=6371e3m

mE=5.972e24kg

G=pi*sqrt(2*5.972*(299792458)^2*10^(24))/(6371e3)

G=5.109e14

If instead we use half the gradient at θψπ=3.135009

gradient|π=sech2(3.135009)

without the constant G.

Approximating the tangent with a line with gradient tan(β),

tan(β)=sech2(3.135009)

12β=12tan1(sech2(3.135009))

tan(12β)=0.00377

fres=12πG20.00377m

fres=0.009772Gm

fres=2.0430Hz

which is low....

If we instead do not half the gradient at θψπ=3.135009,

tan(β)=sech2(3.135009)=0.00754

fres=12πG20.00754m

fres=0.01382Gm

fres=2.8893Hz

If we take the gradient, without G at the origin instead,


sech2(0)=1

12β=0.39270

tan(12β)=0.41421

fres=12πG20.41421m

fres=0.10243Gm

fres=21.41Hz

What happen when ψ is pushed along its profile?  Maybe aψ increases...chicken!  Big chicken!

Or,

tan(β)=sech2(0)=1

12tan(β)=0.5

fres=12πG20.5m

fres=0.11254Gm

fres=23.53Hz

We are comparing ψ to the energy curve of a SHM system, U=12kx2 the gradient of which U=kx.