fres=12π√gradient|πm=12π√G2sech2(π)m=sech(π)2πG√m
G=π√2mc2ae
aE=6371e3m
mE=5.972e24kg
G=pi*sqrt(2*5.972*(299792458)^2*10^(24))/(6371e3)
G=5.109e14
If instead we use half the gradient at θψπ=3.135009
gradient|π=sech2(3.135009)
without the constant G.
Approximating the tangent with a line with gradient tan(β),
tan(β)=sech2(3.135009)
12β=12tan−1(sech2(3.135009))
tan(12β)=0.00377
fres=12π√G2∗0.00377m
fres=0.009772G√m
fres=2.0430Hz
which is low....
If we instead do not half the gradient at θψπ=3.135009,
tan(β)=sech2(3.135009)=0.00754
fres=12π√G2∗0.00754m
fres=0.01382G√m
fres=2.8893Hz
If we take the gradient, without G at the origin instead,
sech2(0)=1
12β=0.39270
tan(12β)=0.41421
fres=12π√G2∗0.41421m
fres=21.41Hz
What happen when ψ is pushed along its profile? Maybe aψ increases...chicken! Big chicken!
Or,
tan(β)=sech2(0)=1
12tan(β)=0.5
fres=12π√G2∗0.5m
fres=0.11254G√m
fres=23.53Hz
We are comparing ψ to the energy curve of a SHM system, U=12kx2 the gradient of which U′=kx.