Thursday, July 21, 2016

Earth Shield Frequency

From the post "A Shield" dated 27 May 2016,

\(f_{res}=\cfrac{1}{2\pi}\sqrt{\cfrac{gradient|_{\pi}}{m}}=\cfrac{1}{2\pi}\sqrt{\cfrac{G^2sech^2(\pi)}{m}}=\cfrac{sech(\pi)}{2\pi}\cfrac{G}{\sqrt{m}}\)

\(G=\cfrac{\pi \sqrt { 2{ mc^{ 2 } } }  }{a_e}\)

\(a_E=6371e3m\)

\(m_E=5.972e24 kg\)

\(G=\)pi*sqrt(2*5.972*(299792458)^2*10^(24))/(6371e3)

\(G=5.109e14\)

If instead we use half the gradient at \(\theta_{\psi\,\pi}=3.135009\)

\(gradient|_{\pi}=sech^2(3.135009)\)

without the constant \(G\).

Approximating the tangent with a line with gradient \(tan(\beta)\),

\(tan(\beta)=sech^2(3.135009)\)

\(\cfrac{1}{2}\beta=\cfrac{1}{2}tan^{-1}(sech^2(3.135009))\)

\(tan(\cfrac{1}{2}\beta)=0.00377\)

\(f_{res}=\cfrac{1}{2\pi}\sqrt{\cfrac{G^2*0.00377}{m}}\)

\(f_{res}=0.009772\cfrac{G}{\sqrt{m}}\)

\(f_{res}=2.0430 Hz\)

which is low....

If we instead do not half the gradient at \(\theta_{\psi\,\pi}=3.135009\),

\(tan(\beta)=sech^2(3.135009)=0.00754\)

\(f_{res}=\cfrac{1}{2\pi}\sqrt{\cfrac{G^2*0.00754}{m}}\)

\(f_{res}=0.01382\cfrac{G}{\sqrt{m}}\)

\(f_{res}=2.8893 Hz\)

If we take the gradient, without \(G\) at the origin instead,


\(sech^2(0)=1\)

\(\cfrac{1}{2}\beta=0.39270\)

\(tan(\cfrac{1}{2}\beta)=0.41421\)

\(f_{res}=\cfrac{1}{2\pi}\sqrt{\cfrac{G^2*0.41421}{m}}\)

\(f_{res}=0.10243\cfrac{G}{\sqrt{m}}\)

\(f_{res}=21.41 Hz\)

What happen when \(\psi\) is pushed along its profile?  Maybe \(a_{\psi}\) increases...chicken!  Big chicken!

Or,

\(tan(\beta)=sech^2(0)=1\)

\(\cfrac{1}{2}tan(\beta)=0.5\)

\(f_{res}=\cfrac{1}{2\pi}\sqrt{\cfrac{G^2*0.5}{m}}\)

\(f_{res}=0.11254\cfrac{G}{\sqrt{m}}\)

\(f_{res}=23.53 Hz\)

We are comparing \(\psi\) to the energy curve of a SHM system, \(U=\cfrac{1}{2}kx^2\) the gradient of which \(U^{'}=kx\).