Monday, May 30, 2016

Pound To Rescue Permittivity

From the post "Wrong, Wrong, Wrong" dated 25 May 2015,

\(F=\int{F_{\rho}}dx\)

where  \(F_{ \rho  }=i\sqrt { 2{ mc^{ 2 } } } \, G.tanh\left( \cfrac { G }{ \sqrt { 2{ mc^{ 2 } } }  } (x-x_{ z }) \right)\)

\(F=2{ mc^{ 2 } }.ln(cosh(\cfrac { G }{ \sqrt { 2{ mc^{ 2 } } }  } (x-x_{ z }))\)

within the boundary of \(\psi\) where \(0\le x \le a_{\psi}\).  For, \(x\ge a_{\psi}\), we use Gaussian flux,

\(F=F_{\small{G}}\cfrac{1}{4\pi r^2}\)

at \(r=a_{\psi}\)

\(F_{\small{G}}\cfrac{1}{4\pi a^2_{\psi}}=\cfrac{q}{4\pi\varepsilon_o a^2_{\psi}}=2{ mc^{ 2 } }.ln(cosh(\pi))\)

for a point mass \(x_z=0\) (in retrospect \(x_z\) was not necessary, \(x_z\) was to prevent the function \(F_{\rho}\) from blowing up at \(x=0\)).

\(F_{ { G } }=8mc^{ 2 }\pi a^{ 2 }_{ \psi  }.ln(cosh(\pi ))\)

where \(ln(cosh(\pi))=2.4503\).

Also,

\(\cfrac{q}{\varepsilon_o}=4\pi a^2_{\psi}m.2c^2ln(cosh(\pi))\)

where \(m\) is a point mass/inertia in the respective field.  Which suggests,

\(\varepsilon_o=\cfrac{1}{2c^2ln(cosh(\pi))}=\cfrac{1}{2*299792458^2*ln(cosh(\pi))}\)

\(\varepsilon_o=2.2704e-18\)

when

\(q=4\pi a^2_{\psi}m\)

That \(q\) is the distribution of \(m\) on the surface of a sphere of radius \(a_{\psi}\).  Which seems to solve the problem of extending a point mass of mass density \(m\) to a mass of finite extent \(a_{\psi}\).

But, the quoted value of \(\varepsilon_o\) is \(8.8542e-12\) from the definition,

\(\varepsilon_o=\cfrac{1}{\mu_oc^2}\)

where \(\mu_o=4\pi \times 10^{-7}\)

we have \(4\pi\approx12.5664\) vs \(2ln(cosh(\pi))\approx4.9006\) and a scaling factor of \(10^{-7}\).

The derived \(\varepsilon_o\) and defined value do not match.