Loading [MathJax]/jax/output/CommonHTML/jax.js

Thursday, May 19, 2016

The Other Term...

From the post "Not To Be taken Too Seriously, Please" and "Time For The Missing Term..." both dated 15 May 2016,

Z={sec(θ0)1ex.yae{y21}dy+cos(θ0)1exaey{1y4}dy}

but θ0 is not small, in fact π2θ00, so the simplification y=sec(θ0)1 is not valid.

Consider,

II2=sec(θ0)1ex.yae{y21}dy=aexsec(θ0)1xaeex.yae{y21}dy

II2=aexsec(θ0)1(ex.yae){y21}dy

Since,

y=sec(θ)    and

rex=tan(θ)

y21=sec2(θ)1=tan(θ)=rex

II2=aexsec(θ0)1(ex.yae)rexdy

II2=aerex2[ex.yae]sec(θ0)1

Since,

Bo=μoqv4πr2.r3ea3e.sin2(ϕ).Z

x2=r2e+r2e2r2ecos(ϕ)=2r2e(1cos(ϕ))

x=re2(1cos(ϕ))=2resin(ϕ/2)

II2=ae4resin2(ϕ/2)[e2resin(ϕ/2)yae]sec(θ0)1

So,

Bo=μoqv4πr2.r3ea3e.sin2(ϕ){ae4resin2(ϕ/2)}[e2resin(ϕ/2)yae]sec(θ0)1

Bo=μoqv4πr2.r2ea2e.cos2(ϕ/2)[e2resin(ϕ/2)yae]sec(θ0)1

At ϕ=π2,

Bo=μoqv8πr2.r2ea2e{e2resec(θ0)aee2reae}

when θ is small, at ϕ=π2,

Bo0

Which is all well...And time is fixed, no more time correction!

Note:  For every given position x, θ is evaluated up to θ0.  x is not dependent on θ nor on y=sec(θ).