Loading [MathJax]/jax/output/CommonHTML/jax.js

Sunday, May 15, 2016

Capturing T+ Particles.

But still if we were to consider the energy term,

UB=12B2oμo

UB=12μo{μoqv4πr2.r3ea3e.sin2(ϕ).Z}2

UB=μo2{qv4πr2.r3ea3e}2sin4(ϕ).Z2

where Z has two terms,

Z={sec(θ0)1ex.yae{y21}dy+cos(θ0)1exaey{1y4}dy}

As x2re and θ0 is small, y=sec(θ0)1,  y210 because 0ysec(θ0).

We simplify by letting the first term of Z be zero.

sec(θ0)1ex.yae{y21}dy=0

Z=cos(θ0)1exaey{1y4}dy

Then we consider, the average of UB over one period, ie its power,

¯UB=1TT0UBdt=1TT0μo2{qv4πr2.r3ea3e}2sin4(ϕ)(cos(θ0)0exaey{1y4}dy)2dt

¯UB=μo2T{qv4πr2.r3ea3e}2T0sin4(ϕ)(cos(θ0)0exaey{1y4}dy)2dt

but

x2=r2e+r2e2r2ecos(ϕ)=2r2e(1cos(ϕ))

x=re2(1cos(ϕ))=2resin(ϕ/2)

¯UB=μo2T{qv4πr2.r3ea3e}2T0sin4(ϕ)(cos(θ0)0e2resin(ϕ/2)aey{1y4}dy)2dt

dϕdt=ω is a constant.

¯UB=μo2Tω{qv4πr2.r3ea3e}22π0sin4(ϕ)(cos(θ0)0e2resin(ϕ/2)aey{1y4}dy)2dϕ

where y=cos(θ),

¯UB=μo2Tω{qv4πr2.r3ea3e}22π0sin4(ϕ)(θ00e2resin(ϕ/2)aecos(θ){sin(θ)cos4(θ)}dθ)2dϕ

Consider,

h=e2resin(ϕ/2)aecos(θ)

hθ=e2resin(ϕ/2)aecos(θ)(+2resin(ϕ/2)aecos2(θ)).(sin(θ))

hθ=h.(2resin(ϕ/2)sin(θ)aecos2(θ))

¯UB=μo2Tω{qv4πr2.r3ea3e}2a2er2e2π0sin2(ϕ)(θ00e2resin(ϕ/2)aecos(θ)reae2sin(ϕ/2)sin(θ)cos2(θ){cos(ϕ/2)cos2(θ)}dθ)2dϕ

¯UB=μo2Tω{qv4πr2.r3ea3e}2a2er2erre2π0sin2(ϕ)(θ00h{cos(ϕ/2)cos2(θ)}dθ)2dϕ

¯UB=μo2Tω{qv4πr2.r3ea3e}2a2er2e2π0(sin(ϕ)cos(ϕ/2)θ00hθ{1cos2(θ)}dθ)2dϕ--- (1)

Integrating by parts,

θ00h{1cos2(θ)}dθ=h1cos2(θ)+2θ00hsin(θ)cos3(θ)dθ

then, let,

Π=(sin(ϕ)cos(ϕ/2)θ00h{1cos2(θ)}dθ)2

Π=(hsin(ϕ)cos(ϕ/2)cos2(θ)+2aereθ00hreae2sin(ϕ/2)sin(θ)cos2(θ)cos(ϕ/2)cos(θ)dθ)2

Π=(hsin(ϕ)cos(ϕ/2)cos2(θ)+2aecos(ϕ/2)reθ00hθ1cos(θ)dθ)2---(2)

θ00hθ1cos(θ)dθ=h1cos(θ)+θ00hsin(θ)cos2(θ)dθ---(3)

and

θ00hsin(θ)cos2(θ)dθ=ae2resin(ϕ/2)θ00hreae2sin(ϕ/2)sin(θ)cos2(θ)dθ

=ae2resin(ϕ/2)θ00hθdθ

=ae2resin(ϕ/2)θ00hθdθ=|ae2resin(ϕ/2)h|θ0---(4)

Substituting (4) into (3), (2) and (1), we have,

¯UB=μo2Tω{qv4πr2.r3ea3e}2a2er2e2π0(|1cos2(θ)e2resin(ϕ/2)aecos(θ)2cos2(ϕ/2)sin(ϕ/2)|θ00+|2aerecos(θ)e2resin(ϕ/2)aecos(θ)cos(ϕ/2)|θ00|a2er2ecot(ϕ/2)e2resin(ϕ/2)aecos(θ)|θ00)2dϕ

with the substitution, h=e2resin(ϕ/2)aecos(θ)

Let III|2π0 be the integral,

III|2π0=2π0(|1cos2(θ)e2resin(ϕ/2)aecos(θ)2cos2(ϕ/2)sin(ϕ/2)|θ00+|2aerecos(θ)e2resin(ϕ/2)aecos(θ)cos(ϕ/2)|θ00|a2er2ecot(ϕ/2)e2resin(ϕ/2)aecos(θ)|θ00)2dϕ

and consider,

(a+b+c)2=a2+b2+c2+2ab+2ac+2bc

let,

a=|1cos2(θ)e2resin(ϕ/2)aecos(θ)2cos2(ϕ/2)sin(ϕ/2)|θ00

b=|2aerecos(θ)e2resin(ϕ/2)aecos(θ)cos(ϕ/2)|θ00

c=|a2er2ecot(ϕ/2)e2resin(ϕ/2)aecos(θ)|θ00

then consider,

h=e2resin(ϕ/2)aecos(θ)

hϕ=e2resin(ϕ/2)aecos(θ)(2recos(ϕ/2)aecos(θ))12

hϕ=h.recos(ϕ/2)aecos(θ)

This is a long tedious way home...


Note:

σ=πϕ2

v=ddtxcos(π/2σ)=ddtxsin(σ)=ddtxcos(ϕ/2)

v=cos(ϕ/2)dxdtxsin(ϕ/2)12dϕdt

{re+x2sin(ϕ/2)}dϕdt=cos(ϕ/2)dxdt