Monday, May 30, 2016

A Big Temperature Particle

From the post "A \(\Psi\) Gun" dated 31 May 2016,

\(f_{res}=0.061\cfrac { c }{ a_{\psi} }\)

If the Sun is one big temperature particle,

\(a_{\psi}=695700000\)

\(f_{res}=0.061*299792458/695700000=0.026286\)

which is a period of \(1/0.026286=38.043s\)

What happen to the Sun every 38.0 seconds?

Given,

\(G=\cfrac{\pi \sqrt { 2{ mc^{ 2 } } }  }{a_{\psi}}\)

\(m_{sun}=1.989e30\)

\(G=\cfrac{\pi \sqrt { 2* 1.989e30*299792458^{ 2 }  }  }{695700000}\)

\(G=2.7001e15\)

None of the \(G\) values matches up.  If \(m\) is to be mass density,

\(G_v=\cfrac{\sqrt{3}G}{\sqrt{4\pi a^3_{\psi}}}\)

\(G_v=7.1895e1\)

and we apply a similar CORRECTION to the previous values;

for the case of an electron,

\(G_v=4.511e8*\cfrac{\sqrt{3}}{\sqrt{4\pi* (2.8179403267e−15)^3}}\)

\(G_v=1.474e30\)

and Earth,

\(G_v=5.109e14*\cfrac{\sqrt{3}}{\sqrt{4\pi*(6371e3)^3}}\)

\(G_v=1.552e4\)

The values still do not match up.  \(m\) is the mass of a point particle.

\(m=\cfrac{\Delta M}{\Delta V}=\cfrac{dM}{dV}\)  as \(\Delta V\rightarrow 0\)

the condition \(\Delta V\rightarrow 0\) applies for the fact that \(m\) is a point.

When the mass is not a point mass, \(m\) is the total mass of the particle because the force involved acts on the total mass of the particle.