The three plots of Fρ, F′ρ and F″ρ are provided below,
in the case of a simple spring-particle system, the force from the retaining spring changes direction and reverses the travel direction of the attached particle. The particle's motion is periodic and oscillatory. In the case of a particle held by a field, the nature of the particle's interaction with the field as a particle or as a wave changes the direction of the force. The field is negative and attracts the particle beyond π, as the particle returns below π it is repelled by the field as a wave and is eventually pushed out towards π again.
When the particle is oscillating, energy is conserved,
∫ππ−Awtanh(x)dx=∫π+Apπtanh(x)dx
Solving,
∫ππ−Awtanh(x)dx=∫π+Apπtanh(x)dx
[ln(cosh(x))]ππ−Aw=[ln(cosh(x))]π+Apπ
ln(cosh(π))−ln(cosh(π−A))=ln(cosh(π+A))−ln(cosh(π))
2ln(cosh(π))−ln(cosh(π−Aw))=ln(cosh(π+Ap))
2ln(cosh(π))=ln(cosh(π+Ap)cosh(π−Aw))
cosh2(π)=cosh(π+Ap)cosh(π−Aw)
cosh(π−Aw)=cosh2(π)cosh(π+Ap)
A plot of cosh(pi)*cosh(pi)/cosh(pi+x) and cosh(pi-x) gives,
where valid solutions to Aw and Ap share a common value on the y-axis.
It is interesting that a valid solution swings the particle within the boundary of −π and π across the center of ψ.
And the thickness of this shield is Aw+Ap.
The actual expression for Fρ the post "Not Exponential, But Hyperbolic And Positive Gravity!" dated 22 Nov 2014 is,
Fρ=i√2mc2G.tanh(G√2mc2(x−xz))
∂Fρ∂x=G2sech2(G√2mc2x)
where we let xz=0, ie a point particle, and ignore i,
at G√2mc2x=π or,
x=π√2mc2G
we approximate fres=12π√gradient|πm=12π√G2sech2(π)m
fres=sech(π)2πG√m=0.01373G√m
where m is the mass of the particle.
From the same post "Not Exponential, But Hyperbolic And Positive Gravity!" dated 22 Nov 2014, G has the same dimension (units) as √2mc2 per meter, the expression for fres has a consistent unit of per second. But without an estimate for G it is useless.
If the radius of an electron is
ae=2.8179403267e−15m
and its mass
m=9.10938291e−31kg
and that the ψ of an electron extend up to ae then,
ae=π√2mc2G
G=π√2mc2ae
G=4.511e8
So, in the case of an electron,
fres=0.01373G√m=0.013734.511e8√9.10938291e−31
fres=6.489e21Hz
We can still achieve resonance at integer division of this number although slow, but this shield is just the size of an electron.
In the case of Earth as one big gravity particle,
aE=6371e3m
and mass
mE=5.972e24kg
G=pi*sqrt(2*5.972*(299792458)^2*10^(24))/(6371e3)
G=5.109e14 and
fres=0.01373*5.109e14/sqrt(5.972e24)
fres=2.870Hz
on the surface of earth.
This frequency can be reproduced.
Good luck! And I dream of anime...ZZZ...
Note: Newton Gravitational Constant G=6.67408∗10−11,
GME=6.67408∗10−11∗5.972∗1024
GME=3.9858∗1014