Saturday, May 14, 2016

Oops Too Hot!

From the post "Perhaps Temperature Is..." dated 13 May 2016,

\(T=\cfrac { T^{ - } }{ 4\pi \tau _{ o }r^{ 2 } } \)

\( T=\cfrac { G_{ { B }o } }{ 4\pi  } \cfrac { g^{ + }.v_{ { g } }\times \hat { r_{ g } }  }{ r_{ g }^{ 2 } } \)

\( E=\cfrac { \tau _{ { E }o } }{ 4\pi  } \cfrac { T^{ + }v_{ { T } }\times \hat { r }  }{ r_{ { T } }^{ 2 } } \)

The field due to \(T^{-}\) act against, the spinning \(g^{+}\) particle and pulls the captured \(T^{+}\) in the weak field, increasing \(r_T\),

\(\cfrac { m_{ T }c^{ 2 } }{ r_{ { T } } } =\cfrac { G_{ { B }o }T^{+} }{ 4\pi  } \cfrac { g^{ + }.v_{ { g } }\times \hat { r_{ g } }  }{ r_{ g }^{ 2 } } -\cfrac { T^{ - } T^{+}}{ 4\pi \tau _{ o }r^{ 2 } } \)

where the sign of \(T^{-}\) has already been accounted for.

Substituting for \(r_T\),

\(\cfrac { 1 }{ r_{ { T } } } =\cfrac { {T^{+}}^2 }{ m_{ T }c^{ 2 } } \left( \cfrac { G_{ { B }o } }{ 4\pi  } \cfrac { g^{ + }.v_{ { g } }\times \hat { r_{ g } }  }{ r_{ g }^{ 2 } } -\cfrac { T^{ - } }{ 4\pi \tau _{ o }r^{ 2 } }  \right) \)

\( E=\cfrac { \tau _{ { E }o } }{ 4\pi  } \cfrac { T^{ + }v_{ { T } }\times \hat { r }  }{ r_{ { T } }^{ 2 } } =\cfrac { \tau _{ { E }o } }{ 4\pi  } (T^{ + }v_{ { T } }\times \hat { r } )\cfrac {{T^{+}}^2 }{ m_{ T }^{ 2 }c^{ 4 } } \left( \cfrac { G_{ { B }o } }{ 4\pi  } \cfrac { g^{ + }.v_{ { g } }\times \hat { r_{ g } }  }{ r_{ g }^{ 2 } } -\cfrac { T^{ - } }{ 4\pi \tau _{ o }r^{ 2 } }  \right) ^{ 2 }\)

\(E=C \left( A-B.T^{ - } \right) ^{ 2 }\)

where,

\( C=\cfrac { \tau _{ { E }o }(T^{ + }v_{ { T } }\times \hat { r }) }{ 4\pi m_{ T }^{ 2 }c^{ 4 } }{T^{+}}^2 \)

\( B=\cfrac { 1 }{ 4\pi \tau _{ o }r^{ 2 } } \)

\( A=\cfrac { G_{ { B }o } }{ 4\pi  } \cfrac { g^{ + }.v_{ { g } }\times \hat { r_{ g } }  }{ r_{ g }^{ 2 } } \)

\(T^{+}\) is fixed in the inner orbit of the nucleus.  \(T^{-}\) is the negative temperature particle free to flow.
Since,

\(V=-\cfrac{q}{4\pi\varepsilon_o r_e}\)

\(V^2=\cfrac{q}{4\pi\varepsilon_o}.\cfrac{q}{4\pi\varepsilon_o r^2_e}=\cfrac{q}{4\pi\varepsilon_o}.E\)

\(V^2=\cfrac{q}{4\pi\varepsilon_o}.C \left( A-B.T^{ - } \right) ^{ 2 }\)

\(V=\left(\cfrac{q}{4\pi\varepsilon_o}.C\right)^{1/2}\left( A-B.T^{ - } \right) \)

So, energy, \(E_i\)

\(E_i\propto\left( A-B.T^{ - } \right)\)

where the sign of \(T^{-}\) has already been accounted for.

As \(T^{-}\) increases, temperature \(T\) decreases, \(E_i\) decreases.  As \(T^{-}\) decreases, temperature \(T\) increase, \(E_i\) increases.

This corrects a previous post "Perhaps Temperature Is..." dated 13 May 2016.