Loading [MathJax]/jax/output/CommonHTML/jax.js

Sunday, May 15, 2016

Time For The Missing Term...

From the post "Electron Orbit B Field II" dated 17 Oct 2014,

Π=tr0xtan(θ)exaecos(θ)dr

Consider the differentiation wrt t first,

III=(xtan(θ)exaecos(θ))=dxdttan(θ)exaecos(θ)+xsec2(θ)exaecos(θ)dθdtxtan(θ).exaecos(θ).1aecos(θ)dxdtxtan(θ).exaecos(θ).xaetan(θ)sec(θ)dθdt

=exaecos(θ){tan(θ)dxdt+xsec2(θ)dθdtxaetan(θ)sec(θ)dxdtx2aetan2(θ)sec(θ)dθdt}

Since,

rx=tan(θ)

rx2dxdt=sec2(θ)dθdt

xsec2(θ)dθdt=rxdxdt=dxdttan(θ)

So,

III=exaecos(θ){tan(θ)dxdtdxdttan(θ)xaetan(θ)sec(θ)dxdt+xaetan2(θ)sec(θ)dxdt}

III=exaecos(θ)xae{tan2(θ)sec(θ)tan(θ)sec(θ)}dxdt

Substitute back into Π,

Π=r0exaecos(θ)xae{tan2(θ)sec(θ)tan(θ)sec(θ)}dxdtdr

But,

rx=tan(θ)

1x=sec2(θ)dθdr

dr=xsec2(θ)dθ

So,

Π=x2aedxdtθ00exaecos(θ){tan2(θ)sec(θ)tan(θ)sec(θ)}sec2(θ)dθ

Π=x2aedxdtθ00exaecos(θ){tan2(θ)sec(θ)tan(θ)sec3(θ)}dθ

Π=x2aedxdtθ00exaecos(θ){tan2(θ)sec(θ)sin(θ)cos4(θ)}dθ

Since,

tan(θ)d(sec(θ))=tan2(θ)sec(θ)d(θ)=sec2(θ)1d(sec(θ))

and

d(cos(θ))=sin(θ)

We break Π into two parts,

Π1=x2aedxdtθ00exaecos(θ){tan2(θ)sec(θ)}dθ

Π1=x2aedxdtsec(θ0)0ex.sec(θ)ae{sec2(θ)1}dsec(θ)

Π1=x2aedxdty00ex.yae{y21}dy

where   y0=sec(θ0)

and

Π2=x2aedxdtθ00exaecos(θ){sin(θ)cos4(θ)}dθ

Π2=x2aedxdtcos(θ0)1exaecos(θ){1cos4(θ)}dcos(θ)

Π2=x2aedxdty01exaey{1y4}dy

where y0=cos(θ0)

Combining, just to look at it,

Π=x2aedxdt{sec(θ0)1ex.yae{y21}dy+cos(θ0)1exaey{1y4}dy}

At every point along x, the integration is done from zero to θ0.  When x changes, θ0 changes, the limit of integration changes but not θ.  The variable θ is independent of x.

This corrects the post "Electron Orbit B Field II" dated 17 Oct 2014.

 I apologize, I have half a brain and it is infected...