Π=∂∂t∫r0xtan(θ)e−xaecos(θ)dr
Consider the differentiation wrt t first,
III=(xtan(θ)e−xaecos(θ))′=dxdttan(θ)e−xaecos(θ)+xsec2(θ)e−xaecos(θ)dθdt−xtan(θ).e−xaecos(θ).1aecos(θ)dxdt−xtan(θ).e−xaecos(θ).xaetan(θ)sec(θ)dθdt
=e−xaecos(θ){tan(θ)dxdt+xsec2(θ)dθdt−xaetan(θ)sec(θ)dxdt−x2aetan2(θ)sec(θ)dθdt}
Since,
rx=tan(θ)
−rx2dxdt=sec2(θ)dθdt
xsec2(θ)dθdt=−rxdxdt=−dxdttan(θ)
So,
III=e−xaecos(θ){tan(θ)dxdt−dxdttan(θ)−xaetan(θ)sec(θ)dxdt+xaetan2(θ)sec(θ)dxdt}
III=e−xaecos(θ)xae{tan2(θ)sec(θ)−tan(θ)sec(θ)}dxdt
Substitute back into Π,
Π=∫r0e−xaecos(θ)xae{tan2(θ)sec(θ)−tan(θ)sec(θ)}dxdtdr
But,
rx=tan(θ)
1x=sec2(θ)dθdr
dr=xsec2(θ)dθ
So,
Π=x2aedxdt∫θ00e−xaecos(θ){tan2(θ)sec(θ)−tan(θ)sec(θ)}sec2(θ)dθ
Π=x2aedxdt∫θ00e−xaecos(θ){tan2(θ)sec(θ)−tan(θ)sec3(θ)}dθ
Π=x2aedxdt∫θ00e−xaecos(θ){tan2(θ)sec(θ)−sin(θ)cos4(θ)}dθ
Since,
tan(θ)d(sec(θ))=tan2(θ)sec(θ)d(θ)=√sec2(θ)−1d(sec(θ))
and
d(cos(θ))=−sin(θ)
We break Π into two parts,
Π1=x2aedxdt∫θ00e−xaecos(θ){tan2(θ)sec(θ)}dθ
Π1=x2aedxdt∫sec(θ0)0e−x.sec(θ)ae{√sec2(θ)−1}dsec(θ)
Π1=x2aedxdt∫y00e−x.yae{√y2−1}dy
where y0=sec(θ0)
and
Π2=x2aedxdt∫θ00e−xaecos(θ){−sin(θ)cos4(θ)}dθ
Π2=x2aedxdt∫cos(θ0)1e−xaecos(θ){1cos4(θ)}dcos(θ)
Π2=x2aedxdt∫y01e−xaey{1y4}dy
where y0=cos(θ0)
Combining, just to look at it,
Π=x2aedxdt{∫sec(θ0)1e−x.yae{√y2−1}dy+∫cos(θ0)1e−xaey{1y4}dy}
At every point along x, the integration is done from zero to θ0. When x changes, θ0 changes, the limit of integration changes but not θ. The variable θ is independent of x.
This corrects the post "Electron Orbit B Field II" dated 17 Oct 2014.
I apologize, I have half a brain and it is infected...