(\(T^+\), \(p^+\))
(\(p^+\))
(\(g^+\), \(T^+\), \(p^+\))
(\(T^+\), \(p^+\), \(g^+\)) and (\(T^+\), \(p^+\), \(g^+\), \(T^+\))
(\(p^+\), \(g^+\)) and (\(p^+\), \(g^+\), \(T^+\))
(\(g^+\), \(T^+\), \(p^+\), \(g^+\)) and (\(g^+\), \(T^+\), \(p^+\), \(g^+\), \(T^{+}\))
keeping in mind that given equal number of \(g^{+}\) particles, the lower position of \(p^{+}\) in the set increases mass, and assuming that the addition of a \(T^{+}\) particle does not change mass.
Here, we are one short of the seven discovered Hydrogen isotopes. Where's the last?
Note: Cyclic permutation, the particles are added in specific order. No swapping of position nor adding other types of particle please.