Sunday, September 21, 2014

Where Damping Is Light

From the post "What Am I Doing? Pressure Lamp",

\(w^2_a=\cfrac{2p^2}{(T_o-1)}\)

In some model,  \(p=\xi \omega _{ o }\)

\(\omega ^{ 2 }_{ a }=\cfrac { 2\xi ^{ 2 }\omega _{ o }^{ 2 } }{T_{ o }-1 } \) --- (1)

since,

\(\omega ^{ 2 }_{ o }=T_{ o }\omega ^{ 2 }_{ a }\)

where  \(T=T_oe^{iw_at}\) provides the driving force;  \(r_e\)  make to oscillate by varying  \(T\).  \(T_o\)  fixes the position  the center of oscillation,  \(r_e\,o\) through the graph of  \(r_e\)  vs  \(T\).  Since  \(T\)  is sinusoidal, the  DC value of  \(T\)  is  \(T_o/\sqrt{2}\),

\(r_e(\cfrac{T_o}{\sqrt{2}})=r_{e\,kink}\)

So,  given a  \(r_e\)  vs  \(T\) profile,  \(T_o\) determines  \(r_{eo}\) and  is set at the kink of the graph.  Substituting for  \(\omega_o\) expression  (1) becomes,

\(\omega ^{ 2 }_{ a }=\cfrac { 2\xi ^{ 2 }T_{ o }\omega _{ a }^{ 2 } }{ T_{ o }-1 } \)

\( 1=\cfrac { 2\xi ^{ 2 }T_{ o } }{ T_{ o }-1 } \)

\( \xi ^{ 2 }=\cfrac { 1 }{ 2 } (1-\cfrac { 1 }{T_{ o } } )\)

Which would suggest that the system output is totally determined up to this point.  The amount of damping in the system can be adjusted by changing  \(T_o\),  more accurately the DC value  \(\cfrac{T_o}{\sqrt{2}}\).

But is the  oscillator model valid in the first place?  Consider,    \(r_{ e }(T)\)

\( \cfrac { d\, r_{ e }(T) }{ d\, t } =\cfrac { d\, r_{ e }(T) }{ d\, T } \cfrac { d\, T }{ d\, t } \)

\( \cfrac { d^{ 2 }\, r_{ e }(T) }{ d\, t^{ 2 } } =\cfrac { d }{ d\, t } (\cfrac { d\, r_{ e }(T) }{ d\, T } )\cfrac { d\, T }{ d\, t } +\cfrac { d }{ d\, t } (\cfrac { d\, T }{ d\, t } )\cfrac { d\, r_{ e }(T) }{ d\, T } \)

\( \cfrac { d^{ 2 }\, r_{ e }(T) }{ d\, t^{ 2 } } =\cfrac { d^2\, r_{ e }(T) }{ d\, T^2 } (\cfrac { d\, T }{ d\, t } )^{ 2 }+\cfrac { d\, r_{ e }(T) }{ d\, T } \cfrac { d^{ 2 }\, T }{ d\, t^{ 2 } } \)

This means is  a system  \(r_e(T)\),  can made to accelerate by varying  \(T\) and such a "force" is given by the expression above.

And if we consider a characteristic equation for oscillating system of the from,

\(\ddot r_e+2p\dot r_e+\omega_o^2 r_e=0\)

Applying a driving force as above,

\(\ddot r_e+2p\dot r_e+\omega_o^2 r_e=\cfrac { d^2\, r_{ e }}{ d\, T^2 } (\cfrac { d\, T }{ d\, t } )^{ 2 }+\cfrac { d\, r_{ e } }{ d\, T } \cfrac { d^{ 2 }\, T }{ d\, t^{ 2 } } \)

We know that on the  \(r_e\)  vs  \(T\)  profile where  \(\cfrac{d\,r_e}{d\,T}\)  is high,  \(\cfrac{d^2r_e}{d\,T^2}\) is close to zero, and the value of  \(\cfrac{d\,r_e}{d\,T}\)  is approximately a constant for  small  \(\Delta r_e\).  With this simplifications,

\(\ddot r_e+2p\dot r_e+\omega_o^2 r_e\approx {\cfrac { d\, r_{ e } }{ d\, T }}_{kink} \cfrac { d^{ 2 }\, T }{ d\, t^{ 2 } } \)

Since  \(T\)  is sinusoidal  \( \cfrac { d^{ 2 }\, T }{ d\, t^{ 2 } } \)  is also sinusoidal and standard solutions apply.  \(w^2_o-2p^2=w^2_a\)  for a damped system under forced oscillation is valid here.  Notice that there cannot be resonance unless the system is damped;  when  \(p=0\),  \(\omega_a\)  cannot be equal to  \(\omega_o\) unless they are both zero.